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Abstract

Effective reasoning about complex physical systems requires the use of models that
are adequate for the task. Constructing such adequate models is often difficult. In
this disse:tation, we address this difficulty by developing efficient techniques for auto-
matically selecting adequate models of physical systems. We focus on the important
task of generating parsimonious causal explanations for phenomena of interest. For-
mally, we propose answers to the following: (a) what is a model and what is the space
of possible models; (b) what is an adequate model; and (c) how do we find adequate

models.

We define a model as a set of model fragments, where a model fragment is a set
of independent equations that partially describes some physical phenomenon. The
space of possible models is defined implicitly by the set of applicable model fragments:
different subsets of this set correspond to different models. An adequate model is
defined as a simplest model that can explain the phenomenon of interest, and that
satisfies any domain-independent and domain-dependent constraints on t.e structure

and behavior of the physical system.
We show that, in general, finding an adequate model is intractable (NP-hard).

We address this intractability, by introducing a set of restrictions, and use these
restrictions to develop an efficient algorithm for finding adequate models. The most
significant restriction is that all the approximation relations between model fragments
are required to be causal approzimations. In practice this is not a serious restriction

because most commonly used approximations are causal approximmations.

We also develop a novel order of magnitude reasoning technigue, which strikes «

balance between purely qualitative and purely quantitative methods. The order of

v



magnitude of a parameter is defined on a logarithmic scale, and a set of rules propagate
orders of magnitudes through equations. A novel feature of these rules is that they
effectively handle non-linear simultaneous equations, using linear programming in
conjunction with backtracking.

The techniques described in this dissertation have been implemented and have
been tested on a variety of electromechanical devices. These tests provide empirical

evidence for the theoretical claims of the dissertation.
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Chapter 1
Introduction

One of the earliest important ideas in Artificial Intelligence is that effective problem
solving requires the use of adequate models of the domain [Amarel, 1968]. Ade-
quate models incorporate abstractions and approximations that are well suited to
the problem solving task. In most Artificial Intelligence research, models are hand-
crafted by a user. The user must decide what domain phenomena are relevant, and
must select appropriate abstractions and approximations that adequately describe
these phenomena. In most real-world domains, constructing such models is a diffi-
cult, error-prone, and time-consuming task. Automating the construction of adequate
models overcomes these drawbacks and provides future intelligent programs with a
useful modeling tool. In this thesis we investigate the problem of selecting adequate

models in the domain of physical systems.

1.1 Models and tasks

Consider, for example, the schematic of a bimetallic strip temperature gauge, from
[Macavlay, 1988], shown in Figure 1.1. This temperature gauge consists of a battery, a
wire, a bimetallic strip, a pointer, and a thermistor. A thermistor is a semi-conductor
device; a small increase in its temperature causes a large decrease in its resistance. A
bimetallic strip has two strips made of different metals welded together. Temperature

changes cause the two strips to expand by different amounts, causing the bimetallic

1
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Ll L

Battery

, Thermistor
Pointer L

i —

-
Bimetallic
strip

Container of water

Figure 1.1: A temperature gauge

strip to bend.

Consider, now, the task of explaining how the temperature gauge works, i.e., how
the temperature of the thermistor determines the position of the pointer along the
scale. A trained engineer is able to look at this schematic for a few moments, and
provide the following explanation: the thermistor senses the water temperature. The
thermistor’s temperature determines the thermistor’s resistance, which determines
the current flowing in the circuit. This determines the amount of heat dissipated in
the wire, which determines the temperature of the bimetallic strip. The temperature
of the bimetallic strip determines its deflection, which determines the position of the

pointer along the scale.

A crucial part of how the engineer constructs the above explanation is his or
her ability to pick out just the relevant phenomena that needed to be modeled. In
particular, the engineer decided that the important thing to model about the wire is
that it generates heat as current flows through it. The explanation is not cluttered
by references to irrelevant phenomena, such as the electromagnetic field generated by

the current flow in the wire.

Now, consider a slightly different task: the task of explaining how the atmospheric

temperature affects the working of the temperature gauge, i.e., how the temperature
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of the atmosphere affects the position of the pointer along the scale. The engireer’s
explanation would be as follows: the temperature of the atmosphere determines the
temperature of the bimetallic strip, which determines the deflection of the bimetallic
strip. The amount of the deflection determines the position of the pointer along the

scale.

In constructing the above explanation, the engineer completely disregarded the
electrical properties of the wire, the battery, and the thermistor. Modeling these
phenomena is not relevant to explaining how the temperature of the atmosphere

affects the position of the pointer along the scale.

In addition to being able to decide which phenomena must be modeled, the engi-
neer is also able to identify just the right models for each relevant phenomena. For
example, in modeling electrical conduction in the wire, the engineer had to choose
between modeling it as an ideal conductor, a constant resistance resistor, or a resis-
tor whose resistance depends on its temperature. The engineer chose the constant
resistance resistor model because (a) no heat is dissipated by an ideal conductor, and
hence modeling the wire’s resistance is crucial to understanding how the tempera-
ture gauge works; and (b) modeling the dependence of the wire’s resistance on its
temperature is unnecessary—assuming that the resistance is constant is adequate for

explaining the temperature gauge’s functioning.

Of course, what is meant by “just the right model” for each relevant phenomena
is task dependent. For example, consider the following analysis task: predict the
position of the pointer along the scale for a particular thermistor temperature. If a
high fidelity prediction is required, i.e., if the pointer’s position must be predicted with
high accuracy, then the engineer would model the dependence of the wire’s resistance
on its temperature. On the other hand, if a lower fidelity prediction is acceptable, the
engineer would once again use the simpler, constant resistance model for the wire,
thereby simplifying the prediction process.

What makes the above modeling decisions particularly intriguing is that there is
usually a very large space of possible models to choose from. Figure 1.2 shows part
of the space of possible models of a wire. We can choose to model its electrical,

electromagnetic, or thermal properties, or we can choose to model its expansion or
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ideal-conductor
electrical-conductor < constant-resistor
electromagnet resistor temperature-dependent-resistor
wire inductor elastic-wire thermal-resistor
expanding-wire 4 thermally-expanding-wire
axiallyy-rotating-wire rigid-rotating-wire
— Possible mou.! unk torsion-spring

Figure 1.2: The possible models of a wire.

rotation. If we choose to model it as an electrical conductor, we must choose between
modeling it as an ideal conductor, or as a resistor, in which case we must choose
between modeling the resistance as a constant, or as dependent on the temperature.
In addition, we can choose to model the heat generated in the wire due to current
flow.

All the parts of the temperature gauge have a similarly large set of possible models.
Hence, the set of possible models of the temperature gauge, constructed by selecting
an appropriate subset of models for each of its parts, is combinatorially large. And
yet, an engineer, after only a little thought, is able to select an adequate model that

is specifically tailored for each task.

1.2 Problem statement

This thesis is about automating the engineer’s ability to select adequate models for
specific tasks. We cast the problem of selecting adequate models as a search problem.

To do this, we must answer the following three questions:

o What is a model, and what is the space of possible models? (What is tke search

space?)

o What is an adequate model? (What is the goal criterion?)
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o How do we search the space of possible models for adequate models? (What is

the search strategy?)

The thesis proposes answers to each of the above questions in the domain of

physical systems and for the task of generating parsimonious causal ezplanations.

1.3 Proposed solution: An overview

In this section we give a brief overview of our answers to the questions raised in the

previous section. The rest of the thesis develops these ideas in detail.

1.3.1 What is a model and what is the space of possible

models?

In this thesis, we will be concerned with models of the behavior of physical systems.
Such models are best expressed as a set of algebraic and/or differential equations,
that describe various phenomena of interest. Hence, a model is a set of equations.
However, rather than viewing a model as just a set of equations, we will view it as a
set of model fragments. A model fragment is a set of equations that partially describe

a single phenomenon, usually a single mechanism. For example,
{V, =1iR,}

is a model fragment describing electrical conduction in the wire. Note that it is a
partial description of electrical conduction, since it does not include any description
of the variation of the resistance R,,. Figure 1.3 shows the model fragments, and as-
sociated equations, in a possible model of the temperature gauge shown in Figure 1.1.
Model fragments provide an appropriate level of description: (a) they are much easier
to create than complete models; (b) unlike complete models, they are significantly
more reusable; and (c) not all meaningful physical phenomena can be represented by
a single equation.

The space of possible models is defined implicitly by the set of model fragments

that can be composed to form models. The set of model fragments that can be so



Linkage (bms,ptr) :
Thermal-bms(bms) :
Heat-flow(bms,atm):
Heat-flow(wire,bms):
Constant-temperature(atm):
Thermal-equilibrium(bms):
Thermal-equilibrium(wire):
Resistor(wire):
Constant-resistance(wire)
Thermal-resistance(wire):
Electrical-thermistor (thermistor):
Constant-voltage-source(battery):
Kirchhoff’s laws:

Input:

6,: Pointer angle Ty
R,,: Wire resistance R,:
t;: Thermistor current Vi
1. Wire current Vo
1,: Battery current V,:
T,: Bms temperature T,
Ty: Wire temperature Ty
fta: Heat flow (bms to atm) f,:
fu: Heat generated in wire  k;:
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0,, = klzb

Ty = kgTb

fba = k3(Tb - Ta)

fub = ka(Tyy — Tp)
ezogenous(T,)

fba =~ fwb

fwb = fw

Vw = szw
ezogenous(R,,)

fw = Vwiw

Vi = 4Ry Ry = kseks/Tt
ezogenous(V,)
Vo=Vu+Vy tha=1y t=1,
ezogenous(Ty)

Bms deflection

Thermistor resistance
Thermistor voltage

: Wire voltage

Battery voltage

: Atm temperature

Thermistor temperature
Heat flow (wire to bms)
Exogenous constants

Figure 1.3: A possible model of the temperature gauge
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composed is defined by the structure of the physical system. The structure of the
physical system is a description of the parts of the system, and how they are put
together. The parts that can be used to describe a system'’s stiucture are drawn from
a component library. Each component in this library is associated with a set of model
fragments, describing different aspects of the component’s behavicr. For example, tte
set of model fragments associated with a wire would include those shovn in Figure 1.2.
A model of the physical system is a subset of the model fragments associated with
each of the components in the system.

Hence, our answer to the first question is:
e A model is a set of model fragments.

» The space of possible models of the physical system are defined by the structure

of the system and a component library.

1.3.2 What is an adequate model?

We define the adequacy «f a model using three criteria: (a) the task; (b) domain

dependent constraints; and (c) simplicity.

The task

The adequacy of a model can only be determined with respect to a task. In this
thesis, we will be concentrating on the task of providing causal explanations for a
phenomenon of interest. A causal explanation is an explanation in terms of the
underlying causal mechanisms of the domain. For example, the explanations in the
previous section were causal explanations. We have chosen this task because of its
importance in reasoning about physical systems. Weld and de Kleer [Weld and de

Kleer, 1990, page 612] summarize its importance as follows:

... humans expect to be provided explanations in causal terms. ... Part
of the motivation for developing a theory of causality is as a vehicle for a

system to explain its conclusions.
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Figure 1.4: Causal ordering of the parameters

Many qualitative physics researchers have adopted the far stronger posi-
tion that causality is fundamental and plays a central role in reasoning
about physical systems. ... Causal explanations are important to engi-
neers because they are an explicit representation of how a device achieves
its behavior. This explanation itself forms the basis for subsequent rea-
soning. In design tasks it is important to reason backward from effects to
causes to identify what changes to make to a device to better achieve its
specifications. In diagnosis tasks, it is important to reason backward to
pinpoint what could have caused the symptoms. The causal explanation

can guide subsequent quantitative analysis ...

Hence, given a phenomenon of interest, the fundamental criterion for the ade-
quacy of a model is whether or not it is able to provide a causal explanation of the
phenomenon. To check whether or not a model can provide an explanation for a phe-
nomenon, we generate the causal ordering [de Kleer and Brown, 1984; Forbus, 1984;
Williams, 1984; Iwasaki and Simon, 1986b; Iwasaki, 1988] of the parameters of the
model using the equations of the model. The causal ordering of the parameters is
a dependency ordering of the parameters that reflects an engineers notion of causal
dependence between the parameters. The causal ordering is used to check whether
or not a model can provide an explanation for a phenomenon.

For example, suppose we want to explain how the temperature gauge in Figure 1.1
works, i.e., to explain how the temperature of the thermistor (T;) causally determines
the angular position of the pointer (6,). Figure 1.4 shows the causal ordering gen-
erated from the model in Figure 1.3. Since 6, is causally dependent on 7} in this

causal ordering, the model in Figure 1.3 is adequate for the task of explaining how
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the temperature gauge in Figure 1.1 works.

Domain dependent constraints

In addition to requiring that an adequate model be able to explain the phenomenon
of interest, an engineer may want it to satisfy a set of domain dependent constraints.
Such constraints can stem from the structure and the behavior of the physical system.

For example, the following constraint:

(implies
(and (Electromagnet 7object)
(Wire ?object)
(coiled-around ?object ?core)
(magnetic-material ?core))

(Magnet ?core))

requires that if the electromagnetic field generated by a wire is modeled and the wire
is coiled around a core made of a magnetic material, then the core must be modeled
as a magnet. The justification for this domain dependent constraint is that the core
amplifies the magnetic field by three or four orders of magnitude, converting the core
into a powerful magnet. Hence, under these circumstances, an engineer would not
consider the model to be adequate unless the core were modeled as a magnet. More

generally, an adequate model must satisfy all such domain dependent constraints.

Simplicity

Not all explanations of a phenomenon are parsimonious. A parsimonious causal ex-
planation is a causal explanation with a minimum of irrelevant detail. Irrelevant detail
is introduced into explanations because either (a) irrelevant phenomena are modeled;
or (b) needlessly complex models of relevant phenomena are used. For example, we
could introduce irrelevant detail into an explanation of how the temperature gauge
in Figure 1.1 works by modeling the electromagnetic field generated by the wire. We
could also introduce irrelevant detail into this explanation by modeling the tempera-

ture dependence of the wire’s resistance, since approximating the wire’s resistance by
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assuming that it is constant is adequate for explaining how the temperature gauge
works.

'To minimize the amount of irrelevant detail in an explanation, the model gener-
ating the explanation must be as simple as possible. The notion of model simplicity
that supports the generation of parsimonious causal explanations is based on a prim-
itive approzimation relation between model fragments. The intuition underlying our
definition of model simplicity is that modeling fewer phenomena more approximately
leads to simpler models. An adequate model is required to be as simple as possible
according to this ordering.

Hence, our answer to the second question is:

e An adequate model

- is able to provide causal explanations for the phenomenon of interest;
— satisfies any domain dependent constraints; and

— 1s as simple as possible.

Let us say that a model is a causal model, with respect to a phenomenon of interest,
if and only if it is able to explain the phenomenon and if the domain dependent
constraints are satisfied. Hence, an adequate model is a minimal causal model, i.e., a

causal model such that no simpler model is a causal model.

1.3.3 How do we find adequate models?

Given the structure of the physical system and a component library, there is an ex-
ponentially large space of possible models of the physical system. We will show later
that the problem of finding an adequate model in this space of possible models is
intractable (NP-hard). Intuitively, this means that, to find an adequate model, we
can do little better than check each model in the exponentially large space of possible
models. Even for small systems, this space is extremely large, so any brute force ap-
proach is out of the question. However, this seems to contradict the observation that

expert engineers are able to provide parsimonious causal explanations for phenomena
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LetMbea
causal model

Replace M by one of
those simplifications
Y

Are any
6f M's simplifications
causal models?

M is a minimal
causal model

Figure 1.5: Algorithm for finding a minimal causal model.

after only a little bit of thought. This means that the world provides additional struc-
ture, which can be exploited to develop an efficient, polync:uial time model selection

algorithm.

Upward failure property

One property that is likely to be satisfied in modeling the physical world is the
upward failure property. The upward failure property states that if a model is not a
causal model, then no simpler model is a causal model. Intuitively, this seems like
a reasonable property. After all, if a model is unable to explain the phenomenon of
interest, then there is little reason to believe that a simpler model is able to provide an
explanation. If the upward failure property is satisfied, then, given an initial causal
model, the algorithm shown in Figure 1.5 can be used to efficiently find an adequate
model, i.e., a minimal causal model. In this algorithm, M is the initial causal model,
with an immediate simplification of M being produced by either replacing a model
fragment in M by an immediate approximation, or by dropping a model fragment.
The algorithm works by continually replacing M by an immediate simplification that
is a causal model, until all the immediate simplifications of M are not causal models.

The upward failure property then tells us that M is a minimal causal model.
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Causal approximations

The upward failure property is useful because it leads to a polynomial time algo-
rithm for finding an adequate model. However, checking whether or not the space of
possible models satisfies the upward failure property is, in general, difficult. This is
because the upward failure property is a global property. To address this shortcoming
we have identified a set of local properties, which can be easily checked as we build
up the component library, that entail the upward failure property. In particular, we
have identified an important class of approximations called causal approzimations.
When all the approximations are causal approximations, replacing a model fragment
by a more accurate model fragment results in a superset of causal relations between
parameters. This forms the basis for proving the upward failure property, and the use
of the algorithm shown in Figure 1.5. Causal approximations are particularly useful
because they are common in modeling the physical world. For example, Table 1.1
shows a number of commonly used approximations, all of which are causal approxi-
mations. These approximations are described in greater detail in Appendix A. The

exact definition of a causal approximation is found in Chapter 5.

Inertialess objects | Inviscid flow Rigid bodies

Frictionless motion | Elastic collisions Ideal gas law

Zero or constant gravity Ideal heat engines

Non-relativistic mass and motion No thermal expansion

Ideal thermal iasulators and conductors | Constant thermal conductance
Ideal electrica! insulators and conductors | Constant resistance and resistivity

Table 1.1: Examples of causal approximations

Finding an initial causal model

The algorithm in Figure 1.5 requires us to find an initial causal model M, from which
to start the simplification. A natural choice for this model is the most accurate model
describing the physical system. However, starting with the most accurate model is
often undesirable. Hence, we introduce a heuristic method, based on the component

interaction heuristic, that allows us to find a initial causal model. For example, one
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component interaction heuristic is the following:

(implies
(and (terminals 7object ?termi)
(voltage-terminal ?7termi)
(connected-to 7termi 7term2))

(voltage-terminal ?term2))

which says that if any terminal of a component is modeled as a voltage terminal,
then all terminals connected to that voltage terminal must also be modeled as voltage
terminals. This allows the components corresponding to the connected terminals to
interact by sharing voltages at those terminals. Note that the above constraint does
not require all connected terminals to be modeled as voltage terminals; it only says
that if a terminal is a voltage terminal, then terminals connected to it must also be
voltage terminals. We use such heuristic constraints to build up a causal model, and
then use the algorithm in Figure 1.5 to find a minimal causal model.

In summary, the answer to the third question is as follows:

e When all the approximations are causal approximations, an adequate model
can be found efficiently by first identifying an initial causal model, and then

simplifying it.

1.4 Contributions

The thesis makes the following important contributions:

o It introduces a novel criterion for defining model adequacy: the criterion that
a model must be able to provide a parsimonious causal explanation for a phe-

nomenon of interest.

o It presents a clear formalization of the model selection problem, making the

problem amenable to theoretical analysis.
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o It uses the above formalization to analyze the complexity of finding adequate
models, and shows that the problem is intractable. This analysis yields three
differevt sources of intractability, which can be summarized as follows: (a) decid-
ing what phenomena to model; (b) deciding how to model selected phenomena;

and (c) having to satisfy all the domain dependent constraints.

o It introduces a new class of approximations, called causal approximations, which
are commonly found in modeling the physical world. Causal approximations are
important because they lead to the development of an efficient algorithm for

finding adequate models.

o It introduces a novel order of magnitude reasoning method which is used to
generate the behavior of a physical system. The method strikes a balance
between purely quantitative and purely qualitative reasoning, and is based on
defining the order of magnitude of a quantity on a logarithmic scale. This
makes the method applicable even in the presence of non-linear simultaneous

equations.

¢ It introduces the component interaction heuristic that is useful in finding causal

models.

o It describes an implemented representation methodology for representing the

space of possible models of a physical system.

e It describes the results of testing our implementation of the model selection

algorithm on = variety of electromechanical devices.

1.5 Readers guide

The rest of the thesis presents the details of our solution to the model selection
problem. Chapter 2 is a detailed answer to the first of our three questions. It describes
models and model fragments, and shows how they are represented. Chapter 3 is a
detailed answer to the second of our three questions. It describes our criteria for the

adequacy of a model. These two chapters are central to understanding this thesis.
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Chapter 4 presents a formalization of the model selection problem, and uses this
formalization to analyze the complexity of finding adequate models. It shows that the
general problem of finding adequate models in NP-hard, and identifies three different
sources of intractability. Section 4.1, which presents the formalization, is necessary
for understanding Chapters 5 and 6. However, readers not interested in the details
of the proofs of intractability can skip the rest of the chapter.

Chapter 5 contains some of the main results of this thesis. It introduces the upward
failure property, and uses the upward failure property to develop an efficient algo-
rithm for finding an adequate model. It then introduces a number of local properties
of a knowledge base that ensure that the global upward failure property is satisfied.
In particulai, this chapter introduces the class of causal approximations, and dis-
cusses their role in ensuring that the upward failure property is satisfied. Chapter 6
generalizes the results of Chapter 5 to models involving differential equations.

Chapter 7 presents the novel order of magnitude reasoning method that we use
to generate the behavior of the physical system. This behavior is used to evaluate
some of the domain dependent constraints introduced in chapter 3. This chapter is
self-contained, and can be read independently of the rest of the thesis.

Finally, Chapter 8 presents the component interaction heuristic and the imple-
mented program for model selection. It also reports on our experimental results.
Related work is discussed in Chapter 9, and conclusions and future work are dis-
cussed in Chapter 10.

We conclude this introductory chapter with a brief note on short papers that
describe different aspects of this thesis. The main results of Chapters 4 and 5 are
presented in [Nayak, 1992a]. An overview of some aspects of Chapters 2, 3, and 8 is
presented in [Nayak et al., 1992]. Finally, much of Chapter 7 is reproduced in [Nayak,
1992b).



Chapter 2
Models and model fragments

In this chapter we describe the types of models that we consider in this thesis. Fun-
damentally, we will be considering models of the behavior of physical systems, that
are best represented as sets of equations. Section 2.1 discusses the different types of
equations that can be used in models of physical systems, and Section 2.2 discusses
the need for multiple models of a single system. The next two sections introduce
mode] fragments, and show how model fragments can be used to represent the space
of possible models of a physical system. The final section of this chapter discusses
the actual representational mechanisms that we use to implement these ideas. In
particular, we introduce a class level description of components and model fragments,

and show how these classes are organized.

2.1 Models of the behavior of physical systems

In this thesis we will be concerned with models of the behavior of physical systems,
typically of engineered devices. (In the rest of the thesis we will use “device” as a
synonym for “physical system.”) Models of device behavior are best represented as a

set of equations that relate a set of parameters.

16
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2.1.1 Parameters

A parameter is a numerical attribute representing a physical property of the device,
e.g., temperature of an object, voltage drop across an electrical conductor, magnetic
field in a region. Parameters are usually functions of both time and space, e.g., the
temperature of an object can vary with time and with location within the object.

It is common to disregard the dependence of parameter values on space and/or
time. A lumped parameter model disregards the dependence of parameter values on
spatial location. Such models make the assumption that the variation of parameter
values over a specific region of space is negligible, with the primary variation being as
a function of time. For example, we may choose to model the temperature of an object
as a lumped parameter, i.e., assume that the temperature is uniform throughout the
object, though the temperature may still vary with time.

An equilibrium model disregards the dependence of parameter values on time.
Such models are useful for modeling the asymptotic behavior of devices, i.e., device
behavior after a sufficiently long time has elapsed, so that any transient behavior has
died out. For example, consider a wall separating a heated room from the cold air
outside. An equilibrium model can be used to model the eventual temperature profile

in the wall.

2.1.2 Equations

Equations are relations between parameters. Different types of equations are used to
represent different types of models. The most general types of equations are partial
differential equations. Partial differential equations can model the variation of pa-
rameter values over both time and space. For example, the well known Navier-Stokes
equation [Welty et al., 1984] is a partial differential equation that describes fluid flow
as a function of both time and space.

Ordinary differential equations can model the variation of parameter values only
as a function of a single independent variable, such as time. Hence, ordinary differen-
tial equations are used to represent lumped parameter device models. For example,

Hooke’s law [Halliday and Resnick, 1978) is an ordinary differential equation that
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describes the behavior of a simple harmonic oscillator like a spring-block system.

Algebraic equations do not contain any partial or total derivatives. Hence, they
can be used to represent equilibrium, lumped parameter device models. For exam-
ple, Ohm’s law [Halliday and Resnick, 1978} is an algebraic equation describing the
relationship between current flow through a resistor and the voltage drop across the
resistor.

Another widely used type of equation is the qualitative equation [Bobrow, 1984;
Kuipers, 1986). Qualitative equations do not relate the exact numerical values of pa-
rameters. Instead, they represent functional dependencies and monotonicity relations
between parameters. For example, if we do not know the exact functional form of the
relation between the resistance of a wire and its temperature, we could use a qual-
itative equation to express the fact that the resistance functionally depends on the
temperature, and that increasing the temperature results in an increase in resistance.

In this thesis, we will only consider lumped parameter models. However, we will
consider both time-varying models, as well as equilibrium models. Hence, we have

the following:

e A device model is a set of algebraic, qualitative, and/or ordinarv differential

equations, relating a set of parameters.

Figure 2.1 reproduces the temperature gauge introduced in the previous chapter.
Figure 2.2 shows a set of equations that describe this temperature gauge. This set
of equations represents an equilibrium model of the temperature gauge, since no
differential equations are used. The equation ezogenous(Q) represents the fact that
the value of Q is determined exogenously; it can be viewed as a shorthand for the
equation @ = ¢, for some constant c¢. The equation M—(Q;,Q,) is a qualitative
equation representing the functional dependence of Q; on Q,, and the fact that if Q,

increases then @, decreases [Kuipers, 1986].

2.2 Multiple niodels

Any device can be modeled in many different ways, i.e., it can be described by different

sets of equations. Different device models differ because they give different answers
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LS

Bimetallic
strip

Container of water

Figure 2.1: A temperature gauge

to the following two fundamental questions:

e What must be modeled? Different models can differ because they choose to

model different physical phenomena. For example, the physical phenomena
modeled in igure 2.2 include the heat generated due to current flow in the wire,
but not the electromagnetic field generated by the same current flow. Models
can also differ because they choose different granularities, i.e., they choose a
different set of objects to model. For example, the model in Figure 2.2 chose
a granularity that includes the bimetallic strip as a single object. A different
model might have chosen a different granularity, such as one that separately

modeled the two strips of the bimetallic strip.

How must the chosen things be modeled? Even though models may choose to
model the same phenomena at the same level of granularity, they muy differ
based on the specific models they choose. For example, the model in Figure 2.2
models electrical conduction in the wire as a constant resistance resistor. How-
ever, other models could have chosen to use different models of electrical con-
duction, e.g., by modeling the the wire as an ideal conductor, or as a resistor

whose resistance depends on its temperature. Similarly, the model in Figure 2.2



CHAFTER 2. MODELS AND MODEL FRAGMENTS

gp = kll‘b
Ty = kT
fba = kS(Tb = Ta)
fub = ka(Ty — T)
ezogenous(T,)
foa = fun
f wh = f w
Vw = sz1u
ezogenous(R,,)
f w = Vuly
Vi = iR,
M—-(R., T:)
ezogenous(V,)
Vi=Vu+V
ly = 4
it = iw
ezogenous(T;)
6,: Pointer angle 73 Bms deflection
R,: Wire resistance R;: Thermistor resistance
1;: Thermistor current Vi: Thermistor voltage
i1w: Wire current Vw: Wire voltage
1, Battery current V.: Battery voltage
T,: Bms temperature T,: Atm temperature
T,: Wire temperature T;: Thermistor temperature
fea: Heat flow (bms to atm) f,;: Heat flow (wire to bms)
fu: Heat generated in wire  k;: Exogenous constants

Figure 2.2: A set of equations describing the temperature gauge
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uses an equilibrium model for the temperature of the wire, while other mod-
els might choose to use a differential equation model to model the transient

behavior of the wire’s temperature.

2.3 Model fragments

Since a device can be modeled in a variety of different ways, it is important that we
be able to represent the space of possible models of the device. We represent this

space using model fragments.

2.3.1 What is a model fragment?

A model fragment is a set of independent equations that partially describe some
physical phenomena at some level of granularity. Different model fragments can
describe different phenomena, or can be different descriptions of the same phenomena.
For example, Figure 2.3 shows a model fragment that describes electrical conduction
in a wire by modeling the wire as a resistor. Figure 2.4 shows a different model
fragment that descrilses the same phenomena for the wire by modeling the wire as
an ideal conductor. Finally, Figure 2.5 shows a model fragment that describes the
temperature depencence of the wire’s length, a completely different phenomena.

In general, model fragments are only partial descriptions of phenomena. For
example, the model fragment in Figure 2.3 only specifies the relation between the
voltage (V,,) and the current (i,); it does not say anything about the variation of the
resistance of the wire. Additional model fragments describing the resistor’s resistance
are necessary to complete this description.

Model fragments can be viewed as either component model instances [de Kleer
and Brown, 1984; Williams, 1984], or process instances [Forbus, 1984]. Component
model instances and process instances usually have applicobility conditions (e.g., op-
erating conditions [de Kleer and Brown, 1984; Williams, 1984] or quantity condi-
tions [Forbus, 1984]), that determine when the equations can be used. There are

well developed techniques for handling such applicability conditions [Forbus, 1990;



22 CHAPTER 2. MODELS AND MODEL FRAGMENTS

{Vw = sz»w}

Figure 2.3: Model fragment describing a wire as a resistor.

{Vw = 0}

Figure 2.4: Model fragment describing a wire as an ideal conductor.

{lw = luo(1 - ay(Tw — Two))}

Figure 2.5: Model fragment describing the temperature dependence of the wire’s
length.

Crawford et al., 1990; Iwasaki and Low, 1991]. Hence, in this thesis, rather than
explicitly modeling and reasoning about these applicability conditions, we assume
that the only model fragments under consideration are the ones whose applicability

conditions are satisfied.

2.3.2 Advantages of model fragments

A device model is constructed by composing a set of model fragments, i.e., rather
than viewing a model just as a set of equations, it is much more useful to think of it
as a set of model fragments. Hence, we have the following alternative definition of a

model:

® A model is a set of model fragments that describe some set of phenomena at

some level of detail.

This viewpoint has a number of advantages. First, because model fragments are
partial descriptions of a single phenomena, they usually consist of a small number of
equations. Hence, constructing a library of model fragments is relatively easy. On the
other hand, device models usually consist of a large number of equations, sometimes

as many as hundreds of equations, because they are complete descriptions of a number
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of phenomena. Hence, constructing a model is much more difficult than constructing
a model fragment.

Second, a set of model fragments is an implicit representation of a very large set
of models. This is because any subset of this set of model fragments can be composed
to form a model.! Hence, a set of model fragments is an implicit representation of
an exponentially large set of models. Alternate representations of this large space
of models, by explicitl, representing each model, are unrealistic. To put it another
way, explicitly representing the space of possible models restricts us to representing
a much smaller set of models.

Third, mode! fragments are reusable, nnt just in different models of the same
device, but in different models of different devices. For example, the model fragments
shown in Figure 2.3-2.5 can be reused, not only in a number of different models of
the temperature gauge shown in Figure 2.1, but also in models of other devices that
use wires. This means that the effort of constructing a library of model fragments

can be amortized over their use in a variety of different models.

2.3.3 Composing model fragments

The equations of a device model are created by composing the equations of the model
fragments used to construct the model. In most cases, the composition is a straight-
forward union of the equations in the model fragments. However, because model
fragments are partial descriptions of phenomena, there is a need to have special types
of expressions that provide only partial information about equations. Such partial
descriptions have associated with them a set of composition rules that are used to
combine different partial descriptions to create a complete equation in the model.
Consider, for example, a bathtub partially filled with water. Svppose that a tap
has been turned on to fill up the bathtub. Simultaneously, suppose that the drain
plug in the bathtub has been opened to try and empty the bathtub. The net effect
of these two water flows (i.e., from the tap into the bathtub, and out of the bathtub

1As we shall see later, not every subset of model fragments can be viewed as a model, but the
basic observation still holds.
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through the drain) can be described by the equation:

El'?tlb == ftap — farain

where Vi, is the volume of water in the tub, ftap is the rate at which water enters
the tub through the tap, and fyrqin is the rate at which water leaves the tub through
the drain. For maximum flexibility, it is useful to describe the two water flows using
separate model fragments. What might the equations of these model fragments be?
Intuitively, the model fragment describing the tap water flow must say that the water
flowing through the tap tends to increase the volume of water in the bathtub. Sim-
ilarly, the model fragment describing the drain water flow must say ¢hat the water
flowing out of the drain tends to decrease the volume of water in the bathtub.

We can express this using the I+ and I- operators introduced by Forbus [Forbus,
1984]. I+(q1,¢;) says that g, is a positive influence on @1, while I-(q,, ¢2) says that
g2 is a negative influence on ¢;. Given a set of influences on a parameter q, we use
the closed world assumption that these are the only influences on ¢ to construct an
equation. For example, the model fragment describing the tap water flow would have
the equation I+(Vius, fiap), and the model fragment describing the drain water flow
would have the equation J—(Viu, farain) Combining these two model fragments, and

assuming that these are the only influences on Vi,;, we get the equation

dViw
’_dttl = ftap - fdrain
The use of composable operators like I+ and I— are crucial to our use of model
fragments as partial descriptions of phenomena. Table 2.1 shows the composable
operators that we use. Brief descriptions have been included in this table, and more

detailed descriptions are provided in Appendix C.

2.3.4 Relations between model fragments

We now turn to a discussion of some important relations between model fragments:
contradictory and approzimation. We also introduce assumption classes, and the

required assumption classes of a model fragment.
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I+ Positive influence on derivatives
I- Negative influence on derivatives
sum-term Term in a sum

sum-to-zero | Quantities that add up to zero

(Used for Kirchhoff’s current law)

same-value | Quantities are equal

(Used for Kirchhoff’s voltage law)
same-reference | Quantities have a common reference (potential)
(Used for Kirchhoff’s voltage law)

same-circuit | Flows belong to the same circuit

{Used for Kirchhoff’s current law)

Table 2.1: Composable operators

The contradictory relation

As menticned earlier, different model fragments can be descriptions of different phe-
nomena, or can be different descriptions of the same phenomena. When model frag-
ments describe the same phenomena, they often make contradictory assumptions
about the domain. For example Figure 2.6 shows three different model fragments
describing electrical conduction in a wire, which make contradictory assumptions. In
particular, the ideal conductor model fragment assumes that the resistance of the con-
ductor is zero, the ideal insulator model fragment assumes that the resistance of the
conductor is infinite, while the resistor model fragment assumes that the resistance
of the conductor is non-zero and finite.
Ideal-conductor(wire-1): V, =0

Ideal-insulator(wire-1): :, =0
Resistor(wire-1): V, =i R,

Figure 2.6: Model fragments describing electrical conduction in a wire.

We represent the fact that model fragments make contradictory assumptions about
the domain using the contradictory relation. If m, and m, are model fragments, then
contradictory(m;, my) says that m; and m, make contradictory assumptions about

the domain. It is important to note that the contradictory relation is a primitive,
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domain-dependent relation which cannot, in general, be derived from the equations of
the model fragments. For example, there is nothing intrinsically contradictory about
the equations of the ideal conductor model fragment and the ideal insulator model
fragment, i.e., it is certainly possible that both the current through a conductor and
the voltage drop across the conductor is zero. The contradiction between them is a
domain fact. However, we assume that the contradictory relation is irreflexive (so
that model fragments cannot contradict themselves), and symmetric (so that model

fragments can only be mutually contradictory):

—contradictory(my,mn,) (2.1)

contradictory(m,, my) = contradictory(ms, m,) (2.2)

The approrimation relation

As discussed above, when two model fragments describe the same phenomenon, they
often make contradictory assumptions about the domain. In addition to specifying
that model fragments contradict each other, an engineer may be able to specify that
one model fragment is a more approzimate description of the phenomenon than the
other. This means that the predictions made by the more accurate model fragment
are “closer to reality” than the predictions made by the more approximate model
fragment. We represent such knowledge using the approrimation relation between
model fragments. In particular, approzimation(m,, m,) says that the model fragment
‘N, is a more approximate description of some phenomena than the model fragment
m,. For example, Figure 2.7 shows some of the approximation relations between the
model fragments shown in Figure 2.6.

approzimation(Resistor(wire-1), Ideal-conductor(wire~1))
approrimation(Resistor(wire-1),Ide»1-insulator(wire-1))

Figure 2.7: Approximation relation between the electrical conduction model frag-

ments.

Once again, it is important to note that the approzrimation relation is a primitive,
domain-dependent relation, and this relation cannot, in general, be derived from the

equations of the model fragments. For example, there is nothing about the equations
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of the ideal conductor model fragment that tells us that it is necessarily a more ap-
proximate description of electrical conduction than the resistor model fragment; this
just happens to be a domain fact discovered by scientists and engineers. However, we
require that the approzimation relation be irreflexive, anti-symmetric, and transitive
(so that model fragments are not approximations of themselves, and approzimation
forms a partial ordering on the relative accuracy of the model fragments describing a

phenomena):

—approzimation(m,,m,) (2.3)
approrimation(m,, my) = -approzimation(my, m;) (2.4)

approzimation(my, mz) A approzimation(mga,ms) = approzimation(m,, ms)2.5)

Furthermore, since approximations make different, and hence contradictory, predic-
tions abut the same phenomenon, we require that all approximations are also mu-

tually contradictory:

approzimation(m;, my) = contradictory(m,, ms) (2.6)

Assumption classes

Ar assumption class is a set of model fragments that make different, contradictory
assumptions about the domain. This means that an assumption class is a set of
mutually contradictory model fragments, i.e., if m; and m; are model fragments, and

A is an assumption class, we have:
(my,mg € A) A m; # my = contradictory(m,, m;) (2.7)

One can see that the model fragments in Figure 2.6 form an assumption class describ-
ing electrical conduction in the wire. Figure 2.8 shows two model fragments forming
an assumption class describing the resistance of a wire.

Recall that model fragments are partial descriptions of phenomena. Additional
model fragments are required to complete this description. We represent the set of
model fragments that can be used to complete a description by associating with each

model fragment a set of required assumption classes. Let A be an assumption class
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Constant-resistance(wire-1): erogenous(R,)
Temperature-dependent-resistance(wire-1): R, = Ry,o(l + aw(Tw — Tuo))
ezogenous(Ry.)

ezogenous(ay,)
ezogenous(Tyy)

Figure 2.8: Model fragments describing a wire’s resistance.

required by model fragment m (written requires(m, A)). This means that to complete
the description of the phenomena described by m, we must include a model fragment
from the assumption class A. For example, to complete the description of electrical
conduction described by the resistor model fragment, we require a description of the
resistance, i.e., the Resistor(wire-1) model fragment requires a model fragment

from the assumption class shown in Figure 2.8.

2.4 Space of possible models

In the previous section, we have argued that a set of applicable model fragments form
a compact representation of a very large space of possible models. In this section we
discuss the following issue: given a device description, how do we decide which model

fragments are applicable. Qur answer to this issue can be summarized as follows:

o The set of applicable model fragments is the union of the model fragments

associated with the components of the device.

We now discuss this in detail.

2.4.1 Device structure

The structure of a device is a description of the device which specifies the compo-
nents, or parts, of the device, physical properties of these components, and how these
components are put together to form the device.

The components that can be used to describe the structure of a device are drawn
from a library of component types. For example, to define the structure of the tem-

perature gauge shown in Figure 2.1, the component library must contain component
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types like thermistor, vire, battery, bimetallic-strip, and pointer.
Components are put together to form a device description with the use of struc-
tural relations. These relations are drawn from a library of structural relations, and
include relations such as connected-to (indicating that two component terminals are
connected), coiled-around (indicatir,g that a wire is coiled around a component),
and meshed (indicating that a pair of gears mesh with each other). Figure 2.9 shows

a structural description of the temperature gauge in Figure 2.1.

2.4.2 Structural abstractions

The structure of a device specifies the basic set of components in the device. This
basic set of components can be augmented by recognizing structural abstractions.
Structural abstractions are components that represent a set of other components in
specific structural configurations. For example, components of the Coil-structure
component type represent objects corresponding to a wire coiled around another
object.

The component library contains rules that can be used to recognize instances of
a structural abstraction in the structural description of a device. For example, the

following rule is used to recognize Coil-structures:

(implies
(and (Wire 7object)
(coiled-around 7object 7core))
(exists
?struc Coil-structure
(and (coil-structure-wire ?struc ?object)

(coil-structure-core ?struc ?core))))

Therefore, the set of all components of a device consist of the union of the set of
basic components specified in the structural description, and the set of all structural
abstractions that can be recognized using the rules in the component library. For

example, applying the above rule to the device structure shown in Figure 2.9, we see
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(defdevice bimetallic-strip-temperature-gauge
((?V Battery)
(?T Thermistor) (?W Wire)
(?B Bimetallic-strip)
(?P Pointer)
(7L Linkage)
(?7ATM Atmosphere)
(7A1 Axis)
(7A2 Axis))
(connected-to (battery-terminal-one ?V)
(vire-terminal-one ?W))
(connected-to (battery-terminal-two ?V)
(thermistor-terminal-one ?T))
(connected-to (thermistor-terminal-two ?T)
(vire-terminal-two 7W))
(connected-to (bms-terminal-two 7K)
(linkage-terminal-one ?L))
(connected-to (pointer-terminal-two ?P)
(linkage-terminal-one 7L))
(coiled-around ?W ?B)
(immersed-in 7B 7ATM)
(immersed-in 7P ?ATM)
(immersed-in ?V ?7ATM)
(immersed-in 7L ?ATM)
(fixed-object (bms-terminal-one ?B))
(can-rotate ?P 7A2)
(bms-deformation-axis 7B 7A1))

Figure 2.9: Structural description of the temperature gauge.
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that an instance of the Coil-stricture is recognized, corresponding to the wire, ?W,

being coiled around the bimetallic strip, ?B.

2.4.3 Possible models of a component

The space of model fragments that can be used to construct a device model is defined
by associating with each component of the device, whether a basic component or a
structural abstraction, a set of model fragments that can be used to describe that
component. For example, we could associate with a wire, wire-1, the following model

fragment describing electrical conduction in the wire:
{Vw = Zwa}

As discussed earlier, model fragments can be viewed either as “component models” [de
Kleer and Brown, 1984; Williams, 1984] or “process models” [Forbus, 1984]. Hence, a
model fragment associated with a component is a partial description of some physical
phenomena, including som» physical process, occurring in that component. It is worth
noting that model fragments associated with structural abstractions can be used to
represent physical processes that take place over more than one basic component.
For example, if csi is a structural abstraction representing the wire coiled around
the bimetallic strip, then we could associate with it the following model fragment,

describing heat flow from the wire to the bimetallic strip:

{fcsl = "/csl(Twl — Tbl)}

where f;5 is the heat flow, 4.4 is the thermal conductance, Ty, is the temperature
of the wire, and T}; is the temperature of the bimetallic strip.

In summary, the space of possible models of a device is represented implicitly by
the set of applicable model fragments that can be composed to form models of the
device. The set of applicable model fragments is the union of the model fragments
associated with each of the components of the device. In the next section we discuss
our representation of the space of model fragments that can be used to describe a

component.
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2.5 Model fragment classes

Thus far we have been talking about components and model fragments as instance
level descriptions, i.e., a component is a specific component used in a specific device,
and a model fragment is the specific set of equations describing some physical phe-
nomenon in a specific component. However, building a i:brary of components and
mode] fragments requires that we provide class level descriptions, i.e., descriptions of
classes of components and model fragments that can be instantiated to create struc-
tural descriptions and models for a variety of devices. To this end, we have devised
an implemented language for specifying class level descriptions of components and
model fragments. We now describe this language, and show how we represent the

information described above.

2.5.1 What are component and model fragment classes?

Component and model fragment classes are just classes, where a class is viewed as
a set of instances. Component classes are class level descriptions of components:
components are just instances of the corresponding component classes. Model frag-
ment classes are class level descriptions of phenomena. A component is modeled by
a particular model fragment class by making the component an instance of the class.

Following [Hayes, 1979), classes can be viewed as unary predicates that are true
of their instances. Functions and higher arity predicates ~re implemented as slots on
instances. For example, if s is a binary predicate, and u and v aie instances, then the
literal s (u,v) is represented by placing the instance v on the s slot of the instance u.

Component and model fragment classes inherit various properties to their in-
stances. The most important property that a model fragment class inherits to its
instances is the equations describing the phenomena. These inherited equations form

the model fragment describing the physical phenomena for that instance.

2.5.2 Typographic conventions

A few notes on typographic conventions.
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e Names of components, model fragments, component classes, and model frag-

ment classes will be typeset in typewriter font.

¢ Class names begin with an uppercase letter, while slot names and instance

names begin with a lower case letter.

e If M is a model fragment class, and c is a component, then M(c) denotes the
model fragment resulting from modeling ¢ as an instance of M. M(c) will also
be used to represent the ground literal expressing the fact that c is an instance
of M. It will always be clear from the context whether M(c) represents a model

fragment or a literal.

¢ Instances of component classes will often have names formed by concatenating
the name of the component class with a number.

“7”

e Variables names will start with the character. The variable “?object”

used in class definitions i1s bound to the class instance under consideration.

To illustrate some of the above conventions, let Wire be a component class repre-
senting the set of all wires, and let Resistor be a model fragment class representing
the set of all resistors. Let wire-1 be an instance of Wire. To model wire-1 as a
resistor, we would make it an instance of Resistor, with the corresponding model
fragment being Resistor(wire-1). Note that, since wire-1 is now an instance of
both Wire and Resistor, the literals Wire(wire-1) and Resistor(wire-1) are both

true.

2.5.3 Defining component and model fragment classes

Component and model fragment classes are defined using the defmodel macro. Fig-
ure 2.10 shows the definition of the Resistor model fragment class. We now discuss

various parts of this definition.
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(defmodel Resistor (Electrical-conductor)
((attributes
(resistance
:range Resistance-parameter
:documentation "The resistor’s resistance"))
(equations
(= (voltage-difference ?object)
{* (resistance 7object)

(current (electrical-terminal-cne ?obiect)))))
(assumption-class electrical-conductor-class)
(approximations Ideal-conductor)
(required-assumption-classes resistance-class)
(possible-models Constant-resistance

Temperature-dependent-resistance)))

Figure 2.10: The Resistor model fragment class.

Generalization hierarchy

Component and model fragment classes are organized into a generz.'izatiow hierarchy,
representing the “subset-of” relation between classes. The use of 2 ¢* ueralization iier-
archy, in conjunction with inheritance, is a very powerful tool for building knowledge
bases because it facilitates reuse and knowledge base maintenanc: (a) knowledge
represented with a class can be used, not just by direct instances if the class, but
also by instances of many different classes that are subclasses (speciauzations) of the
class; and (b) since knowledge needs to be represented only with the most general
class to which the kncwledge is applicable, knowledge base mainutenance is facilitated
since most changes tend to be localized.

The second argument to the defmodel macro specifies the list of classes that are
immediate generalizations of the defined class. Hence, the Electrical-conductor
class is an immediate generalization of the Resistor class. Logically this is equivalent

to the following axiom:
Resistor(?object) => Electrical-conductor(?object)

From the point of view of model fragments used in a model, this mear- that any
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model that includes the model fragment Resistor(?object), also includes the model

fragment Electrical-conductor(?object).

Parameters and other attributes

Parameters are represented as instances of a subclass of the Parameter class. For
example, parameters representing vollages are instances of the Voltage-parameter
class, while parameters representing resistances are instances of the kesistance-pa-
rameter class. Both Voltage-parameter and Resistance-parameter are subclasses
of Parameter.

Recall that parameters represent numerical attributes of a device, in particular, of
components. The relationship between a component and a parameter that represents
a particular attribute of the component is represented by unary functions, called
parameter functions. For example voltage-differenceis a parameter function that
returns the instance of Voltage-parameter which represents the voltage difference
across a component being modeled as an Electrical-conductor.

The attributes clause in the definitions of model fragment classes defines the
parameter functions that can be used on components being modeled by that model
fragment class. The definition of the parameter function includes a :range specifica-
tion, which is the class of the parameter retur::2d by the function. For example, the
Resistor model fragment class defines the resistance parameter function, whicn
returns an instance of Resistance-parameter representing the resistance of compo-
nents being modeled as Resistors.

The attributes clause is also ust. ( to define functions that return other at-
tributes of components. For example, two important attributes of an electrical
conductor are the two terminals of the conductor. (Conceptually, terminals are
parts of the component that allow the component to interact with other compo-
nents by sharing parameters [de Kleer and Brown, 1984).) Figure 2.11 shows the
definition of the Two-terminal-electrical-component model fragment class. The
attributesclause in this definition defines the functions electrical-terminal-one
and electrical-terminal-two, which return the two Electrical-terminals of the

electrical component.
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(defmodel Two-terminal-electrical-component (Model-fragment)
((attributes
(electrical-terminal-one
:range Electrical-terminal
:documentation "One end of the >trical component®)
(electrical-terminal-two
:range Electrical-terminal
:documentation "The other end of the electrical component"))
(equations
(= (current (electrical-terminal-one ?object))
(current (electrical-terminal-two Zobject)))
(same-circuit (current (electrical-terminal-one ?object))
(current (electrical-terminal-two Zobject)))
(same-reference (voltage (electrical-terminal-one ?object))
(voltage (electrical-terminal-two ?object))))))

Figure 2.11: The Two-terminal-electrical-component model fragment class.

The attributes that a component inherits from a model fragment class are often
related to attributes that it inherits from a component class. For example, in mod-
eling a wire as an electrical conductor between its two ends, the two terminals of
the electrical conductor correspond to the two ends of the wire. We enforce such

relationships using a set of rules, which are similar to articulation azioms in [Hobbs,

1985].

Equations

The equations that a model fragment class inherits to its instances are defined using
the equationsclause. These equations are defined using equation schemas. Equation
schemas are exactly like equations, except that parameters are replaced by terms like
(resistance 7object). To instantiate such equation schemas for specific instances
of the model fragment class, the variable “?object” is bound to the instance, and the
terms are replaced by the parameter resulting from evaluating the term. For exam-
ple, if resistance(wire-1) = resistance-parameter-1, then evaluating the term

(resistance 7object) for the instance wire-1 results in resistance-parameter-1
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Hence, if wire-1 is modeled as a Resistor, then wire-1 inherits the equation:

(= voltage-parameter-1 (* resistance-parameter-1 current-parameter-1))

Assumption classes

The assumption-class clause in a model fragment class specifies the assumption
class of the model fragments which are instances of the model fragment class. More
precisely, let ¢ be a component and let M1 and M2 be model fragment classes. The
model fragments M1(c) and M2(c) are in the same assumption class if and only if the
assumption-class clause in both M1 and M2 specify the same assumption class. Let
both M1 and M2 specify A in their assumption-class clause. We let the expression
A(c) denote the assumption class of the model fragments M1(c) and M2(c).? Fur-
thermore, we will sometimes say “the assumption class of M1 is A,” meaning that for
any component ¢, the model fragment M1(c) is in assumption class A(c).

For example, we can see that the assumption-~class clause in Resistor’s defini-
tion specifies electrical-conductor-class. Suppose that the assumption-class
clause in Ideal-conductor’s definition also specifies electrical-conductor-class.
This means that for a component such as wire-1, the model fragments Resis-
tor(wire-1) and Ideal-conductor(wire~1) are in the assumption class electri-

cal-conductor-class(wire-1).

Approximations

The approximations clause in a model fragment class specifies the model fragments
that are approximations of instances of that class. More precisely, let ¢ be a compo-
nent and let M1 and M2 be model fragment classes. The model fragment M2(c) is an
approximation of the model fragment M1(c) if and only if the approximations clause

in M1 specifies M2. For example, we can see that the approximations clause of the

?This is a slight abuse of notation. While it is similar to our convention that M1(c) denotes the
model fragment resulting from modeling the component c as an instance of the M1 model fragment
class, it certainly does not mean that A is a unary predicate so that A(c) is a literal meaning that ¢
is an instance of A. To prevent any confusion, we will always refer to A(c) as “the assumption class
A(c))
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Resistor model fragment class specifies Ideal-conductor. This means that for a
component such as wire-1, the model fragment Ideal-conductor(wire-1) is an ap-
proximation of the model fragment Resistor(wire-1). To relate this to terminology

introduced in a previous section, we have:
approrimation(Resistor(wire-1), Ideal-conductor(wire-1))

Similarly, the contradictory clause in a model fragment class specifies the model
fragments that contradict the instances of that class. Figure 2.10 does not show a
contradictory clause because the contradiction between Resistor and Ideal-con-

ductor can be inferred from the approximations clause.

Required assumption classes

The required-assumption-classes clause in a model fragment class specifies all
the assumption classes that are required to complete the description of model frag-
ments that are instances of that model fragment class. More precisely, suppose that
c is a component and M is a model fragment class. Suprose that M specifies A as a
required-assumption-class. This means that, to complete the description spec-
ified by the model fragment M(c), we must include a model fragment from the as-
sumption class A(c). For example, the required-assumption-classes clause of
the Resistor model fragment class specifies resistance-class. This means that
for a component such as wire-1, the description specified by the model fragment
Resistor(wire-1) must be completed by including a model fragment from the as-
sumption class resistance-class(wire-1), i.e., by including either Constant-re-
sistance(wire-1) or Temperature-dependent-resistance(wire-1). To relate it

to terminology introduced earlier, we have:

requires(Resistor(wire-1),resistance-class(wire-1))

Possible models

Recall that the space of device models was defined by the set of model fragments

that can be used to describe the device. This set of model fragments was the union
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of the model fragments that can be used to describe the components of the device.
This means that we need a representation of the set of model fragments that can be
used to model a component. A straightforward way to represent this set of model
fragments is to associate with each component class the set of model fragment classes

which can be used to model instances of that component class.

For example, some of the model fragment classes we could associate with the
Wire component class would include Ideal-conductor, Constant-resistance, and
Temperature-dependent-resistance. This would represent the fact that any in-
stance of Wire can be modeled as an instance of the associated model fragment

classes.

While the above approach is, in principle, correct, a much better approach is to use
a possible models hierarchy. The basic intuition underlying this approach is the ob-
servation that model fragment classes like Ideal-conductor, Constant-resistance,
and Temperature-dependent-resistance are all models of electrical conduction.
Hence, it would be much better if we only had to represent the fact that an instance
of Wire can be modeled as an Electrical-conductor, with additional electrical
conductor models being associated with Electrical-conductor. Similarly, rather
than associating all the electrical conductor models with Electrical-conductor,
we would associate only Ideal-conductor and Resistor with it, and associate
Constant-resistance and Temperature-dependent-resistance with Resistor.

In essence, we build a hierarchy of possible models.

The advantage of the possible models hierarchy are very similar to the advantages
of a generalization hierarchy. First, it leads to compact representations. For example,
one only needs to specify that instances of Wire can be modeled as Electrical--con-
ductor, with additional ways of modeling instances of Wire being inferred from the
hierarchy. Second, knowledge base maintenance is simplified. For example, if we want
to add an additional model fragment class describing yet another electrical conductor
model, e.g., the dependence of the resistance on length, then this change need only
be made to the possible models hierarchy below Resistor; definitions of component

classes, like Wire, need to be modified.

The possible models of a model fragment class are defined in th: r>ssible-models
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ciause of the defmodel macro. F-r example, we can see that the model fragment
classes that can be used to model instances of Resistor include Constant-resis-
tance and Temperature-dependent-resistance.

Note that the generalization hierarchy and the possible models hierarchy often
overlap. For example, Resistor is both a specialization and a possible model of
Electrical-conductor. However, the two hierarchies are not the same. Fcr example,
the Thermal-thermistor model fragment class, which models the dependence of a
thermistor’s resistance on its temperature, is a specialization of the Thermal-object
model fragment class. However, it is evident that not all components being modeled as
Thermal-objects can be modeled as Thermal-thermistors, only thermistors can be
modeled as Thermal-thermistors. Hence, Thermal-thermistor is a specialization

of Thermal-object, but not a possible model of it.

2.5.4 Difference between component and model fragment

classes

Thus far we have been talking about component classes and model fragment classes
as separate types of classes. But what exactly is the difference? The answer is that,
fundamentally, there is no difference! Both model fragment classes and component
classes are partial descriptions. For example, while the Resistor model fragment
class is a partial description of electrical conduction, the Wire model fragment class
is a partial description of what it means for an object to be a wire.

The only difference between component classes and model fragment classes is their
position in the possible models hierarchy. Component classes are the classes that are
at the top of the possible models hierarchy, i.e., component classes are not models of
any other class. Therefore, component classes can be viewed as primitive descriptions.
The decision to model an object as an instance of a component class is, therefore, the
responsibility of the human user providing the input (the structural description), and
is outside the scope of the model selection program.

An interesting consequence of the above observation is that a human user may

choose to define the structure of the device in terms of model fragment classes, rather
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than just component classes. For example, the user may use an instance of the
Electrical-conductor model fragment class as part of a device. The ability to
specify structural descriptions using model fragment classes provides the user with
a valuable abstraction tool. This is useful, for example, during design, where the
designer may know that there is an electrical conductor at some place in the device,

without knowing what specific component implements this electrical conductor.

2.6 Summary

In this chapter we defined a model to be a set of model fragments, where a model
fragment is a set of algebraic, qualitative, and/or ordinary differential equations,
describing some phenomena at some level of detail. Viewing a model as a set of
model fragments is useful because model fragments are easier to construct and more
reusable than complete models. In addition, the set of applicable model fragments
is an implicit description of an exponentially large space of possible models. The set
of applicable model fragments is defined by the device structure and a component
library. The component library specifies the model fragments that can be used to
model each component of the device.

We introduced two important relations between model fragments: contradictory
and approzrimation. Model fragments related by the contradictory relation make
contradictory assumptions about the domain. In addition to being mutually contra-
dictory, model fragments can differ in the relative accuracy with which they model
phenomena. The relative accuracy of model fragments is represented using the approz-
imation relation. In addition to these two relations, we also introduced assamption
classes, which are sets of mutually contradictory model fragments that describe the
same phenorni‘rua.

Finally, we concluded this chapter with a discussion of the actual representational
mechanisms we use to implement the above ideas. In particular, we introduced a
class level representation of components and model fragments and showed how these
classes are organized. In this representation, a model fragment is the reéult of mak-

ing a component an instance of the corresponding model fragment class. Component



42 CHAPTER 2. MODELS AND MODEL FRAGMENTS

and model fragment classes are organized into two hierarchies: a generalization hi-
erarchy and a possible models hierarchy. These hierarchies lead to more compact

representations, and facilitate knowledge base maintenance.



Chapter 3
Adequate models

In this chapter we discuss the adequacy of device models. The adequacy of a device
model is fundamentally determined by the task that needs to be solved. We wili define
the adequacy of a model with respect to the task of generating causal explanations
for a phenomenon of interest. We also show that additional constraints on model
adequacy can stem from the structure and the behavior of the device. Finally, we
define model simplicity based on the intuition that modeling fewer phenomena, more
approximately, leads to simpler models. An adequate model is required to be as

simple as possible.

3.1 Tasks and models

The adequacy of a model is closely tied to the task for which the model is to be used.
Simulations carried out during the final stages of the detailed design of a device require
the use of high fidelity models that incorporate accurate, quantitative descriptions
of all significant phenomena. For example, a high fidelity model of the temperature
gauge shown in Figure 1.1 would include a quantitative, nonlinear equation describing
the dependence of the thermistor’s resistance on its temperature.

On the other hand, models that support analysis during the initial, conceptual
design of a device can be much coarser. For example, during the conceptual design

of the temperature gauge, it is sufficient to use a qualitative model [Bobrow, 1984)] of

43
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the thermistor, which states that the thermistor’s resistance is inversely piopsrtional

to its temperature.

Similarly, Hamscher [Hamscher, 1988, page 11] argles that:

For complex devices the model of the target device should be constructed

with the goal of troubleshooting explicitly in mind.

He then presents a set of representation and modeling principles that assist the effi-
cient diagnosis of complex digital circuits [Hamscher, 1988; Hamscher, 1991]. These
principles are an informal specification of the adequacy of a model with respect to
the task of diagnosis.

In this thesis, we define the adequacy of a model with respect to the task of gener-
ating causal ezplanations for phenomena of interest In the next section we discuss the
importance of this task, both as a vehicle for communication, as well as an important

subtask for other tasks such as analysis, diagnosis, and design.

3.2 Causal explanations

Causation and causal reasoning # e ubiquitous in humau reasoning. People are aiways
asking why something happenen, expecting some sort of a causal explanation in reply.
However, while the notion of cai:sation seems intuitively clear to everyone, providing
a good definition for it has not been easy. Philosophers have argued about the true
nature of causation for a long time (e.g., see [Mackie, 1974]). In this thesis we choose
not to get mired in this debate. Instead, we take the view, common in Artificial
Intelligence [Bobrow, 1984; Iwasaki and Simon, 1986b; Patil et al., 1981; Pople, 1982;
Rieger and Grinberg, 1977; Shoham, 1985; Wallis and Shortliffe, 1982; Weiss et al.,
1978, that causal explanations are explanations of phenomena based on a set of
underlying mechanisms, that are assumed to provide a description of how (the relevant
aspect of) the world really works, i.e., these mechanisms are assumed to be causal

mechanisms. (See [Nayak, 1989] for an overview of this literature.)
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3.2.1 Importance of causal explanations

Causal explanations play an important role in automated reasoning systems as a
vehicle for the system to communicate with its human user. Such explanations can be
used for instructional purposes, as in various Intelligent Computer Aided Instruction
systems [Brown et al., 1982; Forbus and Stevens, 1981; Weld, 1983), or as a method
for explaining the system’s line of reasoning to a human user [Patil et al., 1981;
Weiss et al., 1978; Wallis and Shortliffe, 1982).

In addition to their role in communication, causal explanations play a central role
in focusing other forms of reasoning [Weld and de Kleer, 1990]. Causal explanations
are used in diagnosis to focus the reasoning only on those elements that could have
caused a particular symptom [Davis, 1984]. Causal explanations focus design and
redesign by focusing the reasoning on just those mechanisms that can produce the
desired behavior [Williams, 1989; Williams, 1990]. Causal explanations can also guide
quantitative analysis by providing an overall structure for solving the problem at hand
[de Kleer, 1977].

5.2.2 Tyvpes of causal explanations

Causal explanations are generated by stringing together causal relations of the form
“x causes y.” Different types of causal explanations are generated depending on the
particular vocabulary used for modeling these causal relations, i.e., the types of “x”
and “y” and the meaning of the “causes” relation. In many medical diagnosis systems
(e.g., CASNET [Weiss et al., 1978], CADUCEUS/INTERNIST [Pople, 1982], ABEL [Patil
et al., 1981]) the causal relation relates different possible states of a patient, while the
causal relation itself represents the likelihood of observing the effect given the cause.
A similar approach is used in Bayesian networks, where the causal relation repre-
sents conditional probabilities between random variables [Pearl, 1988). Reiger and
Grinberg, in their work on understanding physical mechanisms [Rieger and Grinberg,
1977], identify 10 different types of causal relations that relate events like actions,

tendencies, states, and statechanges. Shoham’s logical account of causation [Shoham,
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1988] relates temporal propositions, with the causal relation being an INUS condi-
tion [Mackie, 1974], i.e., the cause is an Insufficient but Necessary condition of an
Unnecessary but Sufficient condition for the effect.

In this thesis we adopt the representation of the causal relation widely used in
the literature on qualitative reasoning about physical systems [Weld and de Kleer,
1990]. In this representation, the causal relation relates parameters used to model the
physical system, and the causal relation itself represent: a dependence of the value
of the “effect parameter” on the “cause parameter.” We discuss this in detail in the

next section.

3.3 Causal ordering

The causal relation between the parameters, introduced above, is a transitive relation
that induces an ordering on the parameters called a causal ordering. The dependency
of the “effect parameter” on the “cause parameter” in such a causal ordering takes
one of two forms: functional dependency and integration.

The functional dependency of a parameter p; on a parameter p, corresponds to
a causal mechanism that “instantaneously” determines the value of p; as a function
of the value of p; (and, possibly, some other parameters). We have quoted the word
“instantaneously” to emphasize that what counts as “instantaneously” is a modeling
decision related to the time scale of interest [Iwasaki, 1988; Kuipers, 1987]. For
example, at a time scale of minutes, a thermistor’s resistance is functionally dependent
on its temperature; a change in the temperature can be viewed as instantly causing
a change in the resistance. However, at a much smaller time scale one can actually
observe a delay in the change in resistance due to the change in temperature. Causal
relations as functional dependencies have been studied in [de Kleer and Brown, 1984;
Williams, 1984; Iwasaki and Simon, 1986b] and in [Forbus, 1984], where they are
called indirect influences.

The other type of causal relations between parameters is the integration relation
between a parameter and its derivative. In contrast to functional dependencies that

act instantaneously, the integration relation acts over a period of time. For example,
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the total amount of charge stored in a capacitor depends on the net fiow of current
into the capacitor over a period of time; the amount of stored charge is calculated by
integrating the current flow over that period of time. Causal relations as iniegration
have been studied in [Iwasaki, 1988] and in [Forbus, 1984], where they are called direct

influences.

3.3.1 Loops in the causal ordering

As mentioned akove, the causal relation between parameters is transitive. However,
we do not insist that the causal relation be anti-symmetric, i.e., a parameter p,
can simultaneously causally depend on, and can causally determine, a parameter p,.
Such loops in the causal ordering are manifestations of feedback in the behavior of
the physical system. The proper handling of such feedback, and the resulting loops in
the causal ordering, is the focus of much debate ard ongoing research [Bobrow, 1984;
Iwasaki and Simon, 1986b; de Kleer and Brown, 1986; Iwasaki and Simon, 1986a;
Rose and Kramer, 1991]. In this thesis we adopt the (somewhat neutral) viewpoint,
advanced in [Iwasaki and Simon, 1986b)], of merely viewing such feedback as a set of

interdependent parameters.

3.3.2 Equations

The causal ordering of a set of parameters used to model a physical system is derived
from a set of algebraic, qualitative. and/or differential equations describing the phys-
ic\ system. Equations, as such, <an be viewed as acausal representations of domain
mechanisms. For example, the equation V = iR (Ohm’s law) is an acausal repre-
sentation of a mechanism for electrical conduction. It merely rtates that the voltage
across an electrical conductor, V/, is proportional to the current through the conduc-
tor, ¢, with the resistance of the conductor, R, being the proportionality constant.
However, it makes no causal claims like “the voltage depends on the current.”

To have a causal import, equations must be causally oriented. A causally ori-
ented equation represents the fact that one of the parameters of the equation is

directly causally dependent on the other parameters of the equation. The dependent
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parameter is said to be causally determined by the equation. For example, the acausal
equation V = iR can be causally oriented so that it causally determines V, making

V causally dependent on ¢ and R.

The causal orientation of an equation can be fixed a priori [Forbus, 1984], or it
can be inferred from the equations comprising a model of the system [de Kleer and
Brown, 1984; Williams, 1984; Iwasaki and Simon, 1986b; Iwasaki, 1988]. Fixing the
causal orientation of each equation a priori is overly restrictive, since different causal
orientations are often possible. However, not all causal orientations fit our intuitions
about causality. For example, the equation V = iR can be causally oriented in one
of two ways: either V can be causally dependent on i and R, or i can be causally
dependent on V and R. However, the third possibility, R being causally dependent
on V and ¢, makes no sense because, in an ordinary electrical conductor, there is no
way that changing V and/or ¢ can cause a change in R.

The set of allowed causal orientations of an equation, e, can be represented by the
set, Pe(e), of parameters that can be causally determined by e. As a typographical
aid, parameters that can be causally determined by an equation will be typeset. in
boldface, e.g., V' = iR says that this equation can causally determine V and i but

not R. We extend the function P. to a set E of equations in the natural way:

P(E)= | P.(e) (3.1)
e€E
Similarly, we extend P. to a model M as follows (recall that a model fragment m € M
is just a set of equations):
P.M)= | Pym) (32)
meM
In addition, let P(e) be the set of all parameters in equation e. Extend P to a set E

of parameters, and to a model M, as follows:

P(E) = |J P(e) (3.3)

e€E

U P(m) (3.4)

meM

s
S
I
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3.3.3 Computing the causal ordering

As mentioned earlier, the causal ordering of a set of parameters is derived from the
set of equations representing a model of the system under consideration. Iwasaki and
Simon provide an algorithm for computing the causal ordering [Iwasaki and Simon,
1986b; Iwasaki, 1988]. However, that algorithm is a worst-case exponential time
algorithm. In this section we describe an efficient algorithm for computing the causal
ordering based on the work of Serrano and Gossard [Serrano and Gossard, 1987].
Serrano and Gossard make the key observation that, given a set of equations, the
causal ordering of the parameters can be generated by (a) causally orienting each
equation such that each parameter is causally determined by exactly one equation;
and (b) taking the transitive closure of the direct causal dependency links entailed

by the causal orientations.!

Causal mappings
We formalize Serrano and Gossard’s observation by first defining a causal mapping:

Definition 3.1 (Causal r1.apping) Let E be « set of equations. A function F :
E — P(FE) is said to be u causal mapping if and only if (a) F is 1-1; and (b) for each
e € E, F(e) € P(e). F is an onto causal mapping if for each parameter p € P(E),
there is an equation e € E, such that F(e) = p.

Hence, a causal mapping causally orients each equation such that each parameter is
causally determined by at most one equation, while an onto causal mapping causally
determines every parameter. A causal mapping is said to be partial if it is not defined
on every equation.?

Note that the co-domain of F' in the above definition is P(E) and not P.(E),
even though condition (b) guarantees that the range of F' is a subset of P,(E). We

1Serrano and Cassard do not actually talk about causal ordering or causal orientations. They are
interested in efficiently evaluating a set of constraints. However, the parameter dependencies that
they generate are identical to the causal ordering, and their algorithm can be viewed as causally
orienting each equation. Hence, we attribute the above observation to them.

*Hence, causal mappings as defined in Definition 3.1 are more precisely named total causal
mappings. However, for simplicity, we shall assume that all causal mappings are total, unless we
explicitly mention them to be partial.
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have chosen P(E) as the co-domain of F to ensure that when F is onto then each

parameter in P(E) is causally determined by an equation in E.

Properties of causal mappings

Let E be a set of equations and let F : E — P(E) be a (possibly partial) causal
mappinig. The direct causal dependencies entailed by F is denoted by Cr, and is

defined as follows:
Cr={(p1,p2): (Je € E) F(e)=p, A p1 € P(e)} (3.5)

In other words, (p1,p:) € Cr if and only if p, directly causally depends on p; in the
causal orientations defined by F. Denote the transitive closure of Cr by tc(Cr). The
following lemma states that the transitive closure of different onto causal mappings of
E are identical. (We will soon discuss conditions under which onto causal mappings

exist.)

Lemma 3.1 Let E be a set of independent equations, and let Fy : E — P(E) and
F3: E — P(E) be onto causal mappings. Then tc(Cr,) = tc(Cr,).

Proof: To show that t¢(Cr) = tc(Cr,) we need to show that tc(Cr,) C te(Cr,)
and t¢(CF,) € te(Cr,). We prove the first containment, with the second containment
following by a symmetric argument. To show that tc(Cr,) C t¢(C), it suffices to
show that Cr, C te(Cr,), since te(te(Cr,)) = te(Cr,).

Let (¢,p) € Cr,, and let e € E such that Fy(e) = p, and hence g € P(e). We show
that (¢,p) € te(Cr,). There are two cases:

1. If F3(e) = p, then (g, p) € Cg,, and hence (q,p) € tc(Cr,).

2. If Fy(e) # p, construct the sequence po,p1,-..,pm such that (a) po = p; (b)
pi = Fy(F{ Y (pi-1)), for 1 < i < m; () pm is the first repetition in the sequence,
Le, pi #p;,0< 4,5 < (m—1),i # j, and pm = p;, for some ¢,0 <i < (m —1).
Such a sequence must exist because Fj and F; are onto causal mappings, and

because there are a finite number of parameters. In addition, observe that
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m 2 2, since if m = 1, it follows that po = F(F'(po)), which leads to a

contradiction »s follows:

P = Do
= F2(F1_1(P0))
= F(F'(p)
= Fy(e)

which contradicts the assumption that Fy(e) # p.

We now show that p,, = po. Suppose not, so that p, = p; for some i, 1 <
¢ < (m —1). Hence, it follows that pm—_1 = F1(F5 ' (pm)) = Fi(F; ' (m)) = pi_1,

which contradicts condition (c) above. Hence, p,, = po.

Next, let e; = F{'(pi-1), for 1 < i < m. Hence, p;_; € P(e;) and p; = Fy(e;).
Hence, it follows that (p;—1,pi) € Cr,. Hence, by transitivity, it follows that
(P1,Pm) € te(Cr,), and since py, = po = p, it follows that (p1,p) € te(Cr,).

Now there are two cases: (a) if p; = g, then it follows that (g,p) € tc(Cr,); or
(b) if p1 # g, then since p; = F(e) and g € P(e), it follows that (¢,p,) € C,,
and hence by transitivity (¢, p) € t¢(Cr,). In either case, (¢,p) € t¢(Cr,), and

we are done.

Intuitively, the above proof shows that if F; and F; differ on the parameter to
which an equation e is mapped, then the parameters Fi(e) and F;(e) are causally
dependent on each other. For example, consider the set of equations, and two different
onto causal mappings F} and F3, shown in Figure 3.1.

Note that Fy and F; agree on the parameters assigned to the first two equations,
while they differ on the parameters assigned to the last two equations. However,
under Fy, u causally depends on v from the mapping of the third equation while v
causally depends on u from the mapping of the fourth equation, i.e., u and v are
interdependent. Similarly, under Fj, u causally depends on v from the mapping of
the fourth equation while v causally depends on u from the mapping of the third

equation; once again, u and v are interdependent.
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Equations | F) | F;
ezogenous(z) | z | z
z=Y yiy
ut+v=y u | v
u-v=_0 v [ u

Figure 3.1: A set of equations with two onto causal mappings

Causal ordering definition

Using causal mappings and the above lemma, we now define the causal ordering of
a set of parameters generated from a set of equations. Before we do this, we first
introduce the integration completion of a set of equations. Recall that the integration
relation between a parameter and its derivative constitutes a causal dependency from
the derivative to the parameter. We represent this relation with the int equation:
int(p;, p2) says that p; is the derivative of p;. Note that int(p,,p2) can be causally
oriented in only one way, to causally determine p, by integrating the value of p, over
time. Given a set E of equations the integration completion of E makes explicit all

such integration links among the parameters of E:

Definition 3.2 (Integration completion) Let E be a set of equations. The inte-

gration completion of E, denoted ic(E), is defined as follows:
ic(E) = EU {int(q,dq/dt) : dg/dt € P(E)}

1.e., whenever P(E) contains a derivative, the integration completion of E contains an
int equation expressing the integration relation. Note that if E contains no differential
equations, then F = ic(E).

We now define the causal ordering generated from a set of equations as the tran-
sitive closure of direct causal dependencies generated by any onto causal mapping of

the integration completion of the set of equations:

Definition 3.3 (Causal order) Let E be a set of independent equations, and let
F:ic(E) — P(E) be an onto causal mapping. The causal order of the parameters of



3.3. CAUSAL ORDERING 53

E, denoted C(FE), is the transitive closure of Cp:
C(E) = tc(CF)

The causal ordering is well defined because Lemma 3.1 assures us that the transitive
closures of all onto causal mappings of a set of equations are identical. This allows
us to define the causal ordering of a set of equations as the transitive closure of any
onto causal mapping. The use of ic(E), instead of E, in the above definition ensures
that causal dependencies due to integration links are included in the causal ordering.

Next, we investigate conditions under which the causal ordering exists, i.e., con-

ditions under which an onto causal mapping exists.

Existence of onto causal mappings

We start by defining what it means for a set of equations to be complete, overcon-
strained, and incomplete. Informally, a set of equations is (a) complete if it has as
many equations as parameters, and no subset of equations has fewer parameters than
equations; (b) overconstrained if some subset of equations has more equations than
parameters; and (c) incomplete if some subset of equations, that has no parameters in
common with its complement, has more parameters than equations. More precisely,

we have the following definitions:

Definition 3.4 Let E be a set of independent equations.’

o E is said to be complete if and only if (a) |ic(E)| = |P:(ic(E))| = |P(E)|; and
(8) for every S C ic(E),|S| < |P(S).

o E is said to be overconstrained if and only if there exists S C ic(E) such that
5] > |P(S)].

o L is said to be incomplete if and only if there exists S C ic(E) such that either
(a) P(S)N P.(ic(E)\S) = 0 and |S| < |P.(S)|; or (b)) P(S)NP(ic(E)\S) =0
and |S| < |P(S)|.

34 .]” returns the cardinality of = set. “\” is the set difference operator.
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We now show that an onto causal mapping exists if and only if the set of equations
is complete. This means that when a set of equations is complete, all the parameters

in the equations can be causally determined.

Lemma 3.2 Let E be a set of independent equations. Then there ezists an onto

causal mapping F : ic(E) — P(E) if and only if E is complete.

Proof: To prove this lemma, we start by defining a bipartite graph representing the

set of equations E.

Definition 3.5 Let E be a set of independent equations. Let G = (X,Y,R) be a
bipartite graph such that X UY is the set of nodes, R is the set of edges, and each

edge connects a node in X to a node in Y. G is said to represent E if and only if*

1. X = ic(E), i.e., there is a node in X for each equation, including the iniegration

equations;
2. Y = P(E), i.e., there is a node in Y for each parameter; and

3. (z,y) € R if and only if z € X(= ic(E)), y € Y(= P(E)), and y € P,(z), i.e.,
an equation ts connected to a parameter if and only if the equation can causally

determine the parameter.

For examp.  the bipartite graph representing the equations shown in Figure 3.1
is shown in Figure 3.2.

A matching in a bipartite graph is a set of edges such that no two edges in the
matching share a common node. A matching is said to be complete if and only if each
node in the graph is covered by an edge in the matching, i.e., each node has an edge
in the matching incident upon it. For example, a complete matching in the bipartite

graph of Figure 3.2 consists of the following edges:

{(ezogenous(z),z),(z = y,y), (u + v = y,u),(u — v = 0,v)}

“This representation of the set of equations is due to Serrano and Gossard [Serrano and Gossard,
1987].
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ezogenous(x) z
z=y v
ut+v=y u
u—v=0 v

Figure 3.2: Graph representing a set of equations

From the above definitions, it follows that an onto causal mapping F : ic(E) —
P(E) corresponds to a complete matching in the bipartite graph representing E, and
vice versa. In particular, the complete matching corresponding to an onto causal

mapping F : ic(E) — P(FE) is the following set of edges:

{(e, Fe)) : e € ic(E)}

Hence, it follows that an onto causal mapping F : ic(E) — P(FE) exists if and
only if a complete matching exists for the bipartite graph representing E. How-
ever, Hall’s theorem [Even, 1979, pages 137-138] tells us that a bipartite graph
G = (X,Y, R) contains a complete matching if and orly if (a) |X| = |Y]|; and (b) for
every A C X,|A| £ |R(A)|, where R(A) denotes the set of nodes connected to the
nodes in A by edges in R. However, from Definition 3.5, condition (a) is equivalent
to saying |ic(E)| = |P(E)|, and condition (b) is equivalent to saying that for every
S C ic(E),|S| £ |P(S)l. But, from Definition 3.4, this is equivalent to saying that
E is a complete set of equations. Hence, it follows that there exists an onto causal

mapping F : ic(E) — P(E) if and only if E is complete. O

Causal ordering algorithm

The proof of the above lemma leads directly to the efficient causal ordering algorithm
based on Serrano and Gossard’s work [Serrano and Gossard, 1987]. This algorithm
is shown in Figure 3.3.

In this algorithm, step 1 uses Definition 3.5 to construct the bipartite graph rep-

resenting E. Step 2 constructs a maximum matching in this graph. A maximum
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function find-causal-order(F)
1. Using Definition 3.5 construct G, the
bipartite graph representing E;
2. Construct a maximum matching for G;
3. if the above matching is complete then
a. Let F be the corresponding onto causal mapping;
b. return the transitive closure of the direct causal
dependencies entailed by F
else

c. return nil /* No onto causal mapping exists */
endif
end

Figure 3.3: Causal ordering algorithm

matching is a matching with maximum cardinality. If n is the number of nodes, and
e the number of edges, in a bipartite graph, a maximum matching in the graph can be
constructed in O(y/ne) using algorithms for finding maximum flow in networks, e.g.,
see [Even, 1979, pages 135-138). Appendix D gives a brief overview of this algorithm.
Step 3 checks whether or not this matching is complete. Note that if a complete
matching exists then it is a maximum matching. Conversely, if a complete match-
ing exists then any maximum matching is a complete matching. If the matching is
complete, it constructs the corresponding causal mapping and returns its transitive
closure. If the matching is not complete, then no complete matching exists, and the
set of equations is not complete. Hence, the causal ordering is not well defined, and

the above algorithm returns nil.

We now illustrate the above algorithm with an example. Figure 3.4 shows a
set of equations describing the temperature gauge shown in Figure 1.1. This set of
equations is exactly the same as the ones shown in Figure 1.3, except that here we
have included knowledge of allowed causal orientations of each equation. Figure 3.5
shows the bipartite graph representing this set of equations. This figure also shows
a maximum matching consisting of the thick edges with arrow heads at each end.

One can see that this set of edges forms a complete matching. Figure 3.6 shows a
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Linkage(bms-1,ptr-1):

Thermal-bms (bms=-1):
Heat-flow(bms-1,atm-1):
Heat-flow(wire-1,bms-1):
Constant-temperature(atm=-1):
Thermal-equilibrium(bms-1):
Thermal-equilibrium(wire-1):
Resistor(wire-1):
Constant-resistance(wire-1):
Thermal-resistance(wire-1):
Electrical-thermistor(thermistor-1):
Constant-voltage-source(battery-1):
Kirchhoff’s laws:

Input:

6,: Pointer angle s
R,: Wire resistance R;:
t;: Thermistor current Vi:
1. Wire current Ve
1,: Battery current Ve
T;: Bms temperature T,
T,: Wire temperature T

foa: Heat flow (bms to atm)  f,e:
fu: Heat generated in wire  k;:

o7

0,, = k] Ty
zp = ko Tp
Joa = k3(Th — To,)
.fwb = k4(Tw - Tb)
ezogenous(Ty)
Joo = Fun
.fwb = .fw
Vo= inw
ezogenous(R,,)
.fw = Vwiw
V.= ith; R, = ]‘35»(3]:6/7't
ezogenous(V,)
‘,vsz'l"/t; z.‘uzit; z.t:iw
ezogenous(T;)

Bms deflection

Thermistor resistance
Thermistor voltage

: Wire voltage

Battery voltage

: Atm temperature

Thermistor temperature
Heat flow (wire to bms)
Exogenous constants

Figure 5.4: A possible model of the temperature gauge

graphical representation of the direct causal dependencies generated from the causal

mapping corresponding to the above complete matching. Note, in particular, the

cycle of dependencies between i;,7,, V,,, and V;.

Miscellaneous observations

In practice, we modify step 3b of function find-causal-rrder to return Cr, the graph

of direct causal dependencies generated by the causal mapping F' generated in step

3a, rather than its transitive closure, C(FE). For example, the function would then

return graphs like the one shown in Figure 3.6. This has two important advantages:
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= klzb
zp = szb ;

= k3(T, — fta
fwb = ks(T, - Tb) Ty
ezogenous(T,) y 1
Joo = Fun fus
fwb - fw Tw
=1i1,R, Je
ez:ogenous(Rw) Vo
Jan= V.8, S
Vi =R, R,

R, = kgeke/T: i
ezogenous(V,) R,
V,=V,+V, Ve
i, =1, Vi

= 1y iy
ezogenous(T,) - - T,

Figure 3.5: Bipartite graph representing the equations in Figure 3.4. The set of thick
edges with arrow heads at each end form a complete matching.

Iy—Ri—1, Vo= fu—>fut—>foa—>Ty —> To—-0,
V;.'—.' ‘/t Rw Ta

Figure 3.6: The direct causal dependencies generated by the causal mapping corre-
sponding to the complete matching shown in Figure 3.5.
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1. Paths in this graph provide a causal explanation for how one parameter causally
depends on another. For example, while the transitive closure of the graph
shown in Figure 3.6 can tell us that 8, causally depends on T}, it is unable to
say that this causal dependence is not a direct causal dependence, i.e., is not due
to a single causal mechanism. On the other hand, the graph in Figure 3.6 can
be used to give a detailed explanation for how 6§, depends on T} by identifying

the different causal mechanisms that mediate this dependence.

2. We can use this graph to easily identify the minimal sets of causally inter-
dependent parameters, without incurring the cost of generating the transitive
closure.® The minimal sets of causally interdependent parameters are precisely
the strongly connected components of the graph. A strongly connected com-
ponent of a directed graph is a maximal set of nodes in the graph such that
there exists a directed path from each node in the set to every other node in the
set. An efficient algorithr for generating the strongly connected components
of a directed graph is found in [Even, 1979, pages 64-66]. For example, the set
{2t,%w, Vi, Vi} form a strongly connected component of the graph in Figure 3.6,

and hence these parameters are causally interdependent.

If step 2 results in a maxirum matching that is not complete, then the set of
equations is either overconstrained, or incomplete, or both. Following [Serrano and

Gossard, 1987). we sta‘e tiic following without proof:

1. if the maximum matching found in step 2 is such that a node corresponding to
one of the equations in ic(E) is not covered by an edge in the matching, then

the set of equations is overconstrained.

2. If the maximum matching found in step 2 is such that a node corresponding to
one of the parameters in P(E) is not covered by an edge in the matching, then

the set of equations is incomplete.

The proofs of the above statements are similar to the proof of Lemma 3.2.

5One can easily show that these minimal sets of causally interdependent parameters are the
rainimal complete subsets identified by the causal ordering algorithm in [Iwasaki and Simon, 1986b).
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This concludes our discussion of causal explanations and how they are generated
from a model, i.e., from a set of equations. We now proceed to define the criteria
that we use for model adequacy. The next section introduces the consistency and
completeness of a model; adequate models are required to be consistent and com-
plete. Section 3.5 introduces our representation for the phenomenon of interest; an
adequate model must be able to provide a causal explanation for the phenomenon
of interest. Sections 3.6 and 3.7 introduce constraints stemming from the structurai
and behavioral contexts of a physical system, that must be satisfied by an adequate
model. Finally, Section 3.8 will introduce a simplicity ordering on the set of models,

with an adequate model being a simplest model that satisfies all the above criteria.

3.4 Consistency and completeness of models

In this section we define the two notions of model consistency and model completeness.
Recall from Chapter 2, that a model can be viewed in one of two ways: (a) as a set
of model fragments (Section 2.3.2); and (b) as a set of equations (Section 2.1.2). Our
definitions of model consistency and model completeness will be based on knowledge

stemming from both these viewpoints.

3.4.1 Model consistency

Recall that when two model fragments make contradictory assumptions about the
domain they are related by the contradictory relation (Section 2.3.4). Therefore,
the use of contradictory model fragments in a model is undesirable. Similarly, in
Definition 3.4 we defined the notion of an overconstrained set of equations. If a set
of independent equations is overconstrained, then the equations have no solutions,®
leading to a contradiction.

The above observations lead directly to our definition of a consistent model:

Definition 3.6 (Consistent model) A model M is said to be consistent if and only

if the following two conditions are satisfied:

SBeing independent, the possibility of the equations being merely redundant is ruled out.
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1. Vmy,my € M —contradictory(my, my,), i.e., the model does not contain mutually

contradictory model fragments;
2. The set of equations of M is not overconstrained.

An immediate consequence of the above definition is that a consistent model can
have at most one model fragment from each assumption class. Consistency is the
first important property of an adequate model; a model that makes contradictory
assumptions about the domain, or whose equations are inconsistent, is undesirable.

Hence, we have:
¢ An adequate model must be consistent.

For example, any consistent model of the temperature gauge in Figure 1.1 can-
not simultaneously model the wire both as an Ideal-conductor and as a Resistor
besause these two model fragment classes contradict each other. Similarly, no con-
sistent model of the temperature gauge will model both the wire and the thermistor
as Ideal-conductors and the battery as a Constant-voltage-source. This is be-

cause this set of modeling choices would lead to the following overconstrained set of

equations:
V.=0
Vi=0
ezogenous(V,)
Vi=V. +V,

3.4.2 Model completeness

Recall that model fragments are partial descriptions of pheromena. Additional model
fragments, drawn from the set of required assumption classes, are required to com-
plete this description (Section 2.3.4). A complete model must include complete de-
scriptions of all phenomena that are being modeled. Hence, a complete model must
include model fragments from all required assumption classes. In addition, we will

require that the equaiions of a complete model be able to causally determine all the
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parameters of the model. From Lemma 3.2 we know that when a set of equations is
complete then all the parameters can be causally determined, and the causal ordering

is well defined. These observations lead directly to our definition of a complete model:

Definition 3.7 (Complete model) A model M is said to be complete if and only

if the following two conditions are satisfied:

1. (Ym € M) requires(m,A) = (Im' € A) m' € M, i.e., the model contains a

model fragment from each required assumption class; and
2. The set of equations of M is complete.

Completeness is the second important property of an adequate model; an ad-
equate model must include complete descriptions of all phenomena that are being
modeled, and the model’s equations must be complete so that we can generate causal

explanations for phenomena of interest. Hence, we have:
¢ An adequate model must be complete.

For example, the model shown in Figure 3.4 is complete.”

3.5 Representing the phenomenon of interest

Toward the end of Section 3.1 we stated that, in this thesis, we will define the adequacy
of a model with respect to the task of generating causal explanations for a phenomenon
of interest. Hence, the phenomenon of interest is a crucial input that focuses model
selection. We call the phenomenon of interest the erpected behavior. The expected
behavior of a device is an abstract description of what the system does (but not how
it does it). The causal explanation generated by a model is a description of how the
expected behavior is achieved.

The expected behavior captures, in part, what is commonly referred to as the
function of a device. For example, stating that the device in Figure 1.1 is a tem-

perature gauge indicates that the device model must explain how the temperature of

"Though we haven’t shown the requires constraints, in fact they are all satisfied in this model.
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the thermistor determines the angular position of the pointer. Expe:ted behaviors
can also provide abstract descriptions of device behaviors that would not normally
be considered the device’s primary function. Such knowledge of the expected behav-
lor is commonplace and almost always available either directly from the user, fro:n
the description of the rroblem to be solved, or from the context in which the device
operates.

For example, a student wanting to understand how a device works can provide an
intelligent tutoring system a description of the expected behavior that he or she wants
explained. Or, for example, an automated diagnosis program that diagnoses faults in
a device, must first be provided with a description of the what the correctly working
device is supposed to do. Finally, device names, such as light bulb, vacuum cleaner,
and disk drive are widely used and all are associated with expected behaviors. The
most common expected behavior descriptions are input/output descriptions of device
behavior. _

Following our discussion of causal ordering in Section 3.3, we specify expected
behaviors as a query that requests a causal explanation for how one parameter causally
depends on another. For example, the expected behavior of the temperature gauge

shown in Figure 1.1, representing its primary function, is:
causes(Ty, 6,)

where T is the temperature of the thermistor and 6, is the angular position of the
pointer. This expected behavior requests a causal explanation for how the tempera-
ture of the thermistor causally determines the angular position of the pointer.

The expected behavior provides us with our most important criterion for model

adequacy:

¢ An adequate model must explain the expected behavior, i.e., a model is adequate
with respect to an expected behavior, causes(p;,pz), if it is able to provide a

causal explanation for how p, causally depends on p,.

Given such an expected behavior, one can use the procedures described in Sec-

tion 3.3 to check whether or not a device model is able to provide a explanation for
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how ti.e second parameter causaliy depends on the first parameter. This procedure

is briefly summarized in Figure 3.7.

function check-ezpected-behavior(M, p;,p,)
/* M is a model, assumed to be consistent and complete */
/* causes(py,p2) is the expected behavior */
1. Let E be the equations of M
/* Section 2.3.3 describes how to do this */
2. Compute C(E), the causal ordering generated from E
/* Section 3.3 describes how to do this */
3. if (p1,p2) € C(F) then
/* The expected behavior is satisfied */
return irue
/* The causal explanation can also be returned (Section 3.3) */
else
/* The expected behavior is not satisfied */

return false
endif
end

Figure 3.7: Algorithm for checking whether a model can explain the expected behav-
ior.

For example, the model in Figure 3.4 is able to explain the expected behavior
causes{T;,0,)

since 6, causally depends on T; in the causal ordering generated from this model,
shown in Figure 3.6.

It must be noted that our language for expressing the expected behaviors is ex-
tremely simple; it only allows us to ask for explanations for causal dependencies
between parameters. More expressive languages are, of course, desirable. We might
want to include information about the directions of change, e.g., we might want to
say that increasing T, causes 0, to increase. Or we might want to include more in-
formation about the actual functional relationship, e.g., we might want to say that

there is a linear relationship between T} and 6,.
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However, the price we must pay for using more expressive languages for the ex-
pected behavior is that checking whether or not the expec.ed behavior is satisfied
becomes very expensive, and can often even be impossible. For example, deciding
whether an increase in T; causes an increase or a decrease in 6, with purely quali-
tative information is not possible when there are competing influences. Additional
information about the relative magnitudes of these influences is necessary, which may
or may not be available. Hence, we have chosen a simple, though useful, language
for expressing the expected behavior, leading to an efficient algorithm for deciding
whether or not a model satisfies the expected behavior.

Thus far we have said that an adequate model must be consistent and complete,
and must be able to explain the expected behavior. In addition to these constraints, a
domain expert might want to place additional domain-dependent constraints on model
adequacy. We now investigate two important classes of such constraints, stemming
from the structural and behavioral contezts of the device. These constraints are
expressed using a first-order constraint language, and an adequate model must satisfy

“?” are variables.

all such constraints. Symbols in these constraints that begin with
Constraints are all evaluated with respect to a component of interest, with the variable
“?object” being bound to that component. All other variables in the constraints are

assumed to be existentially quantified.

3.6 Constraints from the structural context

In this section we discuss the structural context, an important source of constraints
on model adequacy. We will then discuss different types of constraints that stem from

the structural context.

3.6.1 Structural context

The structural context of a device consists of the different aspects of the structure of
the device. Informally, the structure of a device is a description of how the device is

physically put together. It includes the components in the the device, the physical
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and structural properties of these components, and the structural relations between

these components that describe how they are put together to form the device.

Components

The components that can be used to describe the structure of a device are drawn from
a library of component types, like the one described in Section 2.5. The particular
choice of components in a component library must reflect (a) the domain of inter-
est; and (b) the most detailed level of granularity that needs to be reasoned about.
(Section 2.4.2 shows how components at a coarser level of detail can be recognized au-
tomatically.) For example, the components used to describe electronic devices would
differ from the components used to describe chemical plants. Similarly, electronic
devices can be described at multiple levels of detail, ranging from logic gates down

to layers in semiconductor wafers.

Physical and structural properties

In addition to the types of the components in the device, the structure of the device
can also specify various properties of these components. These properties can be
broadly classified as physical and structural properties, and include properties such as
shape, dimensions, mass, and material composition. As with the choice of component
types, the choice of physical and structural properties of components depends on the

domain and how it is conceptualized.

Structural relations

Structural relations are relations between components that describe how components
are put together. The most commonly used structural relation is the connected-to
relation, that says that two component terminals are connected to each other [de Kleer
and Brown, 1984]. Other structural relations that we use include coiled-around (in-
dicating that a wire is coiled around a component), meshed (indicating that a pair of
gears mesh with each other), and immersed-in (indicating that a component is im-

mersed in a fluid). As with components and their physical and structural properties,
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the set of structural relations is crucially dependent upon the domain, and how we

choose to conceptualize it.

Structural predicates

Predicates that can be used to describe the structure of a device will be called struc-
tural predicates. In particular, component types will be unary structural predicates,
structural and physical properties of components will be binary structural predicates
(in fact, they will be unary functions), and structural relations will be general n-ary
structural predicates. As discussed above, deciding which predicates are structural

predicates is dependent upon the domain and how it is conceptualized.

Miscellaneous observations

The device structure provides an important bias for model selection. In particular,
we have seen in Chapter 2 that the components specified in the device structure,
in conjunction with a component library, defines the basic space of possible device
models. The structural relations specified in the device structure constrains the space
of component interactions. Hence, the bias provided by the device structure aids the
search for device models by specifying the space of possible component models and
tne space of possible component interactions.

An alternate, though consistent, viewpoint is as follows: the description of device
structure is already a model of the device which embodies some set of modeling
decisions. Hence, the model selection algorithms discussed in this thesis can be viewed
as making additional modeling decisions, given the modeling decisions made above. In
other words, certain aspects of modeling have been automated, while other parts are
still the purview of human experts. This division of labor is particularly useful since
rudimentary structural models of devices are automatically available when human
designers use CAD tools.

Finally, note that the structural context of a device is not fixed, but can change,
even during the normal operation of the device: the components in a device can change
as new components are created and old ones are destroyed (e.g., boiling water creates

steam); the physical and structural properties of components can change (e.g., the
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magnetic strip on your credit card can get demagnetized); and the structural relations
between components can change (e.g., the contact between the hammer and the dome

of an electric bell constantly changes during the normal operation of the bell).

3.6.2 Constraints

Domain-dependent constraints that stem from the structural context are called struc-
tural constraints. Structural constraints are evaluated with respect to a structural
context and a device model. Hence, as the structural context changes, different device
models may be necessary to ensure that all the structural constraints are satisfied.
We distinguish two types of structural constraints: preccondiiions and coherence con-

straints.

Structural preconditions

Structural preconditions are first-order constraints associated with model fragment
classes which use only structural predicates. The structural preconditions associated
with a model fragment class are constraints on the structural context that must be
satisfied if a component is to be modeled by that model fragment class. For example,

assuming that composition and metal are structural predicates, the precondition:®

(and (composition ?object 7material)

(metal ?material))

in the Electrical-conductor model fragment class indicates that a component must
be metallic for it to be modeled as an Electrical-conductor.

Structural preconditions are similar to process preconditions in QP theory [For-
bus, 1984). However, process preconditions are sufficient conditions, i.e., a process
instance is created whenever the process preconditions are satisfied. On the other
hand, structural preconditions are necessary conditions. Hence, the above constraint
does not require that every metallic object be modeled as an Electrical-conductor.

It only says that a component can be modeled as an Electrical-zonductor only

8Recall that the variable “?object” is bound to the component of interest, i.e., to the component
that we want to model as an instance of this model fragment class.
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if 1t is metallic. We can express this precisely by rewriting the above constraint as

follows:

(implies
(Electrical-conductor 7object)
(and (composition 7object ?material)

(metal ?material)))

More generally, if C is a structural precondition associated with model fragment class

M, then this is equivalent to the constraint M(?object) = C.

Structural coherence constraints

Structural coherence constraints are additional first-order constraints on the model
fragment classes used to model one or more components. The predicates used in
structural coherence constraints are either structural predicates or model fragment
classes (which are unary predicates). As with structural preconditions, each struc-
tural coherence constraint is associated with a model fragment class, expressing the
constraint that a component can be modeled by that model fragment class only if the
corresponding constraint is satisfied.

For example, the following structural coherence constraint:

(implies
(and (Wire ?7object)
(coiled-around ?object Zcore)
(magnetic-material ?core))

(Magnet 7core))

associated with the Electromagnet model fragment class, requires that a wire coiled
around a core made of magnetic material can be modeled as an electromagnet only
if the core is modeled as a magnet. The justification for this domain dependent
constraint is that such a core amplifies the wire’s magnetic field by three or four
orders of magnitude, converting the core into a powerful magnet. Hence, under these
circumstances, an engineer would not consider the model to be adequate unless the

core were modeled as a magnet.
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Note that, like structural preconditions, structural coherence constraints are also
associated with model fragment classes. Hence, the above constraint is more precisely

written as:

(implies
(and (Electromagnet ?object)
(Wire 7object)
(coiled-arovund ?object ?core)
(magnetic-material ?core))

(Magnet ?core))

where we have used the fact that A = (B = C) is equivalent to (A A B) = C).

In summary, an adequate model must satisfy all applicable structural constraints:

* A model fragment M(c) can be part of an adequate model only if all the struc-
tural preconditions and structural coherence constraints associated with model

fragment class M are satisfied, with the variable ?object bound to c.

3.7 Constraints from the behavioral context

In this section we discuss the behavioral context, another important source of con-
straints on model adequacy. We will then discuss different types of constraints that

stem from the behavioral context.

3.7.1 Behavioral context

The behavioral context of a device is its behavior at a particular time. The behavior
of a device at a particular time is just the values, at that time, of the parameters
that can be used to model the device. Note that the behavioral context of a device
is dependent upon the time at which the behavior snapshot is taken. Hence, the
behavioral context changes with time, as the values of the parameters change. For
example, the behavioral context of the temperature gauge in Figure 1.1 would include

values for the current flowing in the circuit, the temperature of the bimetallic strip,
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and the magnetic field generated by the wire. As the values of these parameters

change, the behavioral context also changes.

Ideally, we would like the behavioral context to refer to the actual behavior of the
device, e.g., the values of the parameters are obtained by actual measurements on a
physical prototype. However, the actual behavior of a device is usually unavailable.
Rather, the behavior must be computed using the equations of a device model. Hence,
the behavioral context can be computed only after a device model has been selected.
Of course, different device models can predict different behaviors, each introducing
different errors. Hence, it is essential that the behavior be computed with a device

model that introduces an acceptably low error.

A component’s behavioral context can provide modeling information not explicitly
available in the structural context. This is because behavior generation explicates
information that is implicit in equations. Consider modeling an air gap: if the voltage
drop across it is large enough (as in a properly functioning spark plug), then it should
be modeled as an electrical conductor; if the voltage drop across it is not large enough
(as in a common electrical switch), it should be modeled as an electrical insulator.
The value of the voltage drop across the air gap (a behavioral property) determines

the appropriate model for it.

3.7.2 Constraints

Domain-dependent constraints that stem from the behavioral context are called be-
havioral constraints. Behavioral constraints are evaluated with respect to a behavioral
context, a structural context, and a device model. Hence, as the behavioral context
changes over time, different device models may be necessary to ensure that all the
behavioral constraints are satisfied (assuming that the structural context remains
the same). As with structural constraints, we distinguish two types of behavioral

constraints: preconditions and coherence constraints.
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Behavioral preconditions

Behavioral preconditions are first-order constraints associated with model fragment
classes which use only structural predicates and order relations between parameter
values, i.e., they do not use model fragment classes. The behavioral preconditions
associated with a model fragment class are constraints that must be satisfied if a
component is to be modeled by that model fragment class. For example, the precon-
dition:
(< (voltage-difference 7object)
(voltage-difference-threshold 7object))

associated with the Ideal-conductor model fragment class indicates that a compo-
nent can be modeled as an Ideal-conductor only if the voltage drop across it is
less than some threshold. As with structural preconditions, behavioral preconditions
are necessary conditions on the use of model fragment classes. Hence, the above

constraint is more precisely written as:

(implies
(Ideal-conductor 7object)
(< (voltage-difference 7object)
(voltage~-difference-threshold 7object)))

Behavicral preconditicns look superficially similar to quantity conditions in processes
[Forbus, 1984]. However, behavioral preconditions are used to decide which model
fragment classes it an assumption class can be used to model a component. In
contrast quantity conditions in processes only control the activity of a process, but
not the existence of the pracess, In essence, be-~wvioral preconditions are modeling

constraints, while quantity conditionx are ahout the phvsics of the situation.

Behavioral coherence coiiztraints

Behavioral coherence constrainis are aoiiinnz ‘iisi-order constraints on the model
fragment classes used to model oiie or mc ¢ comporents. The predicates used in be-
havioral coherence constraints are either relations between parameter values, struc-

tural predicates, or model fragment classes {which are unary predicates). As with
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behavioral preconditions, each behavioral coherence constraint is associated with a
model fragment class, expressing the constraint that a component can be modeled by
that model fragment class only if the corresponding constraint is satisfied.

For example, the following behavioral coherence constraint:

(implies
(>= (* (voltage-difference 7object)
(current (electrical-terminal-one ?object)))
(electrical-power-threshold ?object))

(Thermal-resistor 7object))

in the Resistor model fragment class states that when a component is being modeled
as a resistor, and if the dissipated power exceeds a threshold, then this dissipation
must be explicitly modeled by modeling the component as a Thermal-resistor.
Note that, like behavioral preconditions, behavioral coherence constraints are also
associated with model fragment classes. Hence, the above constraint is more precisely

written as:

(implies
(and (Resistor 7object)
(>= (* (voltage-difference 7object)
(current (electrical-terminal-one 7object)))
(electrical-power-tl:reshold Zobject)))

(Thermal-resistor ?object))

In summary, an adequate model must satisfy all applicable behavioral constraints:

e A model fragment M(c) can be part of an adequate model orly if al} ¢%e hehav-
ioral preconditions and behavioral coherence constraints «ssoazie’ with model

fragment class M are satisfied, with the variable ?object twunc o «.

3.7.3 Thresholds in behavioral consiraizts

Behavioral constraints can be viewed as deciding whethe: <7 ot purticniar phesn. . ~a

are significant, and hence worth modeling. Behaviorai constizinis decade on 2
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significance of phenomena by checking whether the values of certain parameters are
high enough or low enough. Appropriately set thresholds decide whether or not the

parameters values are high enough or low enough.

For example, the behavioral precondition shown above says that a component
can be modeled as an Ideal-conductor only if the voltage-difference across
the component is insignificant, i.e. small enough. This is checked by comparing
the voltage-difference with the voltage-difference-threshold. Similarly, the
behavioral coherence constraint shown above requires a Resistor to be modeled as
a Thermal-resistor if the heat generated in the Resistor is significant, i.e., large
enough. This is checked by comparing the actual amount of heat generated against

the electrical-power-threshold.

Since the thresholds determine the significance of various phenomena, different
threshold settings lead to models of differing accuracy, i.e., to models that include
different sets of significant phenomena. Thresholds can be either preset or computed
dynamically. A widely used preset threshold in the domain of fluid mechanics is a
threshold of 2300 for Reynolds number, that distinguishes laminar fluid flow from
turbulent fluid flow. Thresholds can also be preset by an engineer from common
practice. For example, in the domain of power distribution systems, where normal
voltages are in the range of tens of thousands of volts, a voltage difference of up to 10
volts may be considered insignificant. On the other hand, in the domain of electronic

circuits, voltages of only up to .01 volts may be considered insignificant.

While thresholds can be preset, a more interesting and robust method of setting
the thresholds is to set them dynamically, based on knowledge of acceptable error
tolerances on some parameters. These error tolerances can be propagated to set
other thresholds. This propagation can be done using either propagation rules, or the
equations of a device model. In this thesis, we do not explore this interesting line of
work any further. See [Shirley and Falkenhainer, 1990; Nayak, 1991] for some initial

work in this area.
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3.8 Simplicity of models

Thus far, we have said that an adequate model must be consistent and complete, must
be able to explain the expected behavior, and must satisfy all the domain-dependent
constraints stemming from the structural and behavioral contexts. Typically a very
large nurmber of device models satisfy these criteria. Most of these models introduce
irrelevant detail into the causal explanations they generate, either by modeling irrel-
evant phenoinena, or by including needlessly complex models of relevant phenomena.

For example, assume that the model in Figure 3.4 satisfies all the above criteria.
Other models that augment this model by modeling additional phenomena, such as
the electromagnetic field generated by the wire, would also satisfy the above criteria.
Similarly, models that use more accurate descriptions of phenomena that are already
modeled, e.g., by modeling the wire as a temperature dependent resistor rather than a
constant resistance resistor, would also satisfy the above criteria. Such models intro-
duce irrelevant detail into the causal explanation of how the thermistor’s temperature
affects the pointer’s angular position.

To address this probiem we need a simplicity ordering on the models. Given such
a simplicity ordering, we will say that an adequate model is a simplest model that
satisfies all the above criteria, i.e., no simpler model satisfies the above criteria. The
simplicity ordering we consider is a partial ordering of the models, and is based on
the approrimation relation between model fragments. This definition of simplicity
is based on the following two intuitions: (a) a model is simpler if it models fewer

phenomena; and (b) approximate descriptions are simpler than more accurate ones.

Definition 3.8 (Simplicity of models) A model M, is simpler than a model M,
(written My < M;) if for each model fragment m, € M, either (a) my € M;; or
(b) there is a model fragmen’ m; € M, such that m, is an approzimation of m;,
i.e., approzimation(my,my). M, is strictly simpler than M, (written My < M, ) if
M; < M, and M; £ M,.

For example, a model simpler than the one shown in Figure 3.4 is one that re-

moves the model fragment Thermal-resistor(wire-1). A more complex model
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resu'ts from replacing the model fragment Constant-resistance(wire-1) by the
model fragment Temperature-dependent-resistor(wire-1). A model that is in-
comparable to the one in Figure 3.4 is the one in which we both remove the model
fragment Thermal-resistor(wire-1) and replace Constant-resistance(wire-1)
by Temperature-dependent-resistor(wire-1).

It is important to note that this definition of model simplicity is based purely
on the intuitions mentioned above. In particular, the definition does not guarantee
that a simpler model is more efficient. Nor does it guarantee that simpler models
lead to simpler causal explanations of the expected behavior. However, while there
are no such guarantees, we believe that the above definition of simplicity provides a
good heuristic for identifying more efficient models, and for generating simpler causal
explanations. In particular, it is common engineering practice to simplify models by
disregarding irrelevant phenomena and by using all applicable approximations. In
addition, in Chapter 5 we shall introduce a special class of approximations, called
causal approzimations, which will ensure that the above definition of simplicity will,
in fact, lead to simpler causal explanations.

We will require that adequate models be as simple as possible, provided the rest

of the criteria discussed in this chapter are satisfied:

¢ An adequate model is a simplest model that meets all the criteria discussed in

this chapter.

3.9 Summary

The adequacy of models is closely linked to the task for which the model is to be
used. In this thesis, we consider the adequacy of models with respect to the task
of generating causal explanations for phenomena of interest. Causal explanations
play an important role in reasoning about physical systems, not only as a vehicle
for communicating with human users, but also to focus other tasks such as diagnosis,
design, and simulation. A widely used class of causal explanations are based on causal

dependencies between parameters. These causal dependencies between parameters,



3.9. SUMMARY 7

also called the causal ordering of the parameters, are derived from the equations
comprising a device model.

Our definition of model adequacy is based on the following inputs:

1. The component library, described in Chapter 2, which is a description of the
components, their possible models, and various relations between the possible

models.

2. The expected behavior, which is the phenomenon for which the causal explana-
tion is desired. The expected behavior is represented as a query, causes(p, p;),
requesting a causal explanation for how one parameter, p,, causally depends on

another, p;.

3. The structural context, which includes the different aspects of the structure of
the device. The structural context defines the basic space of possible device

models.

4. The behavioral context, which includes the values of parameters that can be

used to model the device.

5. The structural constraints, which are a set of domain-dependent constraints

that can be evaluated using the structural context and the device model.

6. The behavioral constraints, which are a set of domain-dependent constraints
that can be evaluated using the behavioral context, the structural context, and

the device model.

Given the above set of inputs, the adequacy of a device model is defined as follows:

1. An adequate model must be consistent, i.e., its equations must not be overde-

termined and it must not include contradictory model fragments.

2. An adequate model must be complete, i.e., its equations must be complete and

it must include model fragments from every required assumption class.



78 CHAPTER 3. ADEQUATE MODELS

3. An adequate model must be able to explain the expected behavior, i.e., the
causal ordering generated from the model’s equations must subsume the causal

dependency for which an explanation is requested.

4. An adequate model must satisfy all domain-dependent structural and behavioral

constraints.

5. An adequate model is a simplest model that satisfies the above four conditions.



Chapter 4

Complexity of model selection

In this chapter we analyze the complexity of the problem of finding adequate device
models. in particular, we will show that this problem is NP-hard. We will provide
three different proofs of this result, with each proof being based on a special case of
the general problem. These special cases help to identify three different sources of the
intractability of the problem of finding adequate device models. Informally, the three
sources of intractability are: (a) deciding what phenomena to model; (b) deciding
how to model the selected phenomena; and (c) ensuring that all domain-dependent

constraints are satisfied.

In Section 4.1 we present a formalization of the problem of finding adequate mod-
els. In particular, we show how the elements of this formalization are derived from the
inputs to the model selection problem discussed in the previous chapter. Section 4.2
contains the complexity analysis of the different special cases of the general problem
of finding adequate models. In Section 4.3 we briefly discuss the complexity of some
related problems. In particular, we show that the problem of finding just a consis-
tent and complete model is intractable, and that finding adequate models remains

intractable even if each equation can have exactly one causal orientation

79
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4.1 Formalizing the problem

In this section we develop a formal statement of the problem of finding an adequate
device model. We start by formalizing the input to tke model selection problem, and

then give a formal statement of the problem.

4.1.1 Formalizing the input

In the previous chapter we saw that the inputs to our definition of model adequacy are
the following: tke component library, the expected behavior, the structural context,
the behavioral context, the structural constraints, and the behavicral constraints.
The formaliz .tion we develop here will include representations of the first two and
the last two of these inputs. However, the formalization will not include an explicit
representation of the structural and behavioral contexts. Rather, we assume that
these are given, and we use them implicitly in formalizing the other inputs. This
means that the complexity results of this chapter, and the algorithms developed in
the next chapter, will have nothing to say about how the structural and behavioral

contexts are computed. Chapters 7 and 8 will discuss this issue in more detail.

We formalize the input to the model selection problem as a tuple Z:
I = (M, contradictory, approzimation, A,C,p,q) (4.1)

where M is the set of all applicable model fragments, contradictory and approzimation
are binary relations on model fragments as discussed in Chapter 2, A is the set of all
applicable assumption classes, C is a set of propositional coherence constraints, and p
and g are parameters representing the fact that causes(p,q) is the expected behavior.
We now discuss each of these, focusing in particular on how the component library,
the structural constraints, and the behavioral constraints are translated into elements
of the above tuple. As a typographic convention, we will typeset all elements of the
input using typewriter ivnt, and all elements of our formalization using italics or

calligraphic letters.
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Propositional coherence constraints

We start by introducing propositional coherence constraints. A propositional coher-
ence constraint is just a propositinnal formula in which the propositions are mod

fragmerts. A propositional coherence constraint is satisfied with respect to a set M
of raodel fragments just in case the corresponding propositional formula is satisfied
Ly the interpretation that assigns true to a proposition if and only if the proposition

is in M, and false otherwise. For example, the propositional coherence constraint
(myV my) = ms

is satisfied by the set {m;,m3} of model fragments. It is also satisfied by the set
{m2,m3}, end by the empty set.

As a convenient shorthand, we allow the use of assumption classes in proposi-
tional coherence constraints. Recall that an assumption class is a set of mutually
contradictory model fragments. Hence, we use an assumption class as a shorthand
for a disjunction of the model fragments in the azsumption class. For example, if the
assumption class A contains the model fragments m; and m,, then the propositional
coherence constraint

mz3=>A

1s equivalent to the propositional coherence constraint
maz = (m, \Y) mz)

Recall that a model is just a set of model fragments. C is the set of propositional
coherence constraints that must be satisfied by any adequate model. As we shall
see, the propositional coherence constraints in C will be defined using the structura!
and behavioral coherence constraints, and the required assumption classes of model

fragments.

The component library

We formalize the component library as a set M’ of all model fragments (Later,

when we discuss the structural and behavioral preconditions, we will intrcduce the
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set M C M’, which is the set of all applicable model fragments.) The model fragments
in M’ are constructed from the structural context, which specifies the components
used in the device, and the component library, which specifies the possible models of
each component class. M’ contains a model fragment for each of the possible ways
in which each component of the device can be modeled, i.e., if c=1 is a component
of the device, and if c-1 is an instance of component class C, and if M is a model
fragment class that is a possible model of C, then M’ contains the model fragment
M(c-1). The possible models of a component class is just the transitive closure of the

possible-models of the class.

M’ = {M(c-1) : c-1is a component of the device
A c-1is an instance of component class C (4.2)
A M is a possible model of C}

Note that the device components used in defining M’ include the structural abstrac-
tions discussed in Section 2.4.2.

The component library also defines a number of important relations: contra-
dictory, approximation, assumpt ion-class, required-assumpt ion-classes,and
generalization. As discussed in Chapter 2, we use cont radictoryand approximation
to define the contradictory and approzimation relations between model fragments,
respectively. In particular, if model fragment class M1 specifies model fragment class
M2 as a contradictory class, and if c is a component such that M1(c) and M2(c) are

model fragments in M’, then we include the literal
contradictory(M1(c),M2(c))

in our formalization. Similarly, if model fragment class M1 specifies model fragment
class M2 as an approximation, and if c is a compone~t such that M1(c) and M2(c)

are model fragments in M’, then we include the literal
apjrozimation(M1(c),M2(c))

in our formalization. The properties of contradictory and approzimaiion are discussed

in detail in Chapter 2. For convenience, we resiate their most important properties
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here:
—contradictory(m,, m,) (4.3)
contradictory(m,, my) = contradictory(mz, m;) (4.4)
—approrimation(m,, m,) (4.5)
approzimation(m,, m,) = —~approzimation(mgq,m,) (4.6)

approzimation(my, mz) A approzimation(m,,ms) = approzimation(m;,ms)(4.7)

approzimation(my, my) = contradictory(m;,ms) (4.8)

We use the assumption-classes of model fragment classes to define the set A’ of
all assumption classes. In particular, if c is a component, and M is a model fragment
class that specifies A as its assumption-class, and if M(c) is a model fragment in
M, then we say that A(c) is an assumption class in A’ that contains the model
fragment M(c).

We formalize the required-assumption~classes of model fragment classes using
propositional coherence constraints. In particular, if a model fragment class M specifies
A as a required-assumption-class, and if ¢ is a component such that M(c) is a

model fragment in M’, then we add the propositional coherence constraint
M(c) = A(c)

to the set C of propositional coherence constraints. Since an adequate model must
satisfy each constraint in C, it follows that every adequate model will include a model
fragment irom each required assumption class.

Finally, we represent the generalization relation between model fragment classes
using propositional coherence constraints. In particular, if a model fragment class M1
Is a generalization of a model fragment class M2, and if M1(c) and M2(c) are model

fragments in M’, then we add the propositional coherence constraint
M2(c) = M1(c)

to the set C of propositional coherence constraints. This ensures that every adequate

model that models ¢ as an instance of M2 also models it as an instance of M1.
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Structural and behavioral preconditions

The structural and behavioral preconditions associated with a model fragment class
are necessary conditions for a component to be modeled by that class. Recall that
structural and behavioral preconditions are constraints that use only structural pred-
icates and order relations between parameters, i.e., they do not use model fragment
classes. Hence, these preconditions are not evaluated with respect to a device model,
but rather can be evaluated using only the structural and behavioral contexts of the
device.

We use the structural and behavioral preconditions to define the set M C M’ of
applicable model fragments, i.e., the set of model fragments for which the structural
and behavioral preconditions are satisfied. More precisely, let M be a model fragment
class and let c be a component such that M(c) is a model fragment in M’. M(c) is
in M if and only if all the structural and behavioral preconditions associated with
model fragment class M are satisfied when the variable “?object” is bound to c. For
example, the model fragment Electrical-conductor(wire-1) is in M only if the

structural precondition

(and (compos.tion 7object ?material)

(metal ?materia?))

is satisfied when “?object” is bound to wire-1. Recall that the other variables in
this constraint, like “?material,” are existentially quantified.

Hence, from the structural and behavioral preconditions, the structural and be-
havioral contexts, and the the set M’ of all model fragments, we define the set M of
all applicable model fragments. Using M and the set .A’ of all assumption classes, it
is straightforward to define the set .4 of all applicable assumption classes. Informally,
A is the set of assumption classes that results from restricting the assumption classes
in A’ to contain only applicable model fragments. More precisely, if A’ € A’ is an
assumption class, then let applicable(A’) be the maximal subset of A’ that contains

only applicable model fragments, i.e., model fragments from M. Hence, we have:

A= {A: A= applicable(A') A A'€ A' A A+#0) (4.9)
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Structural and behavioral coherence constraints

The structural and behavioral coherence constraints associated with model fragment
classes are constraints that use structural predicates, order relations between param-
eters, and unary predicates representing model fragment classes. Hence, these coher-
ence constraints are evaluated with respect to the structural context, the behavioral
context, and a device model. We can remove the dependence of these coherence con-
straints on the structural and behavioral contexts by converting each of them into a
set of propositional coherence constraints. Conceptually, this is achieved by instanti-
ating each coherence constraint in all possible ways over the universe of all objects in
the knowledge base.! Each resulting instantiated constraint can be converted into a
propositional coherence constraint by replacing each ground literal in the constraint

by true, false, or a model fragment, according to the following rules:

1. If the literal involves a structural predicate, use the structural context to decide

whether the literal is true or false.

2. If the literal is an order relation between parameters, use the behavioral context

to decide whether the literal is true or false.

3. If the literal involves a unary predicate representing a model fragment class,
then check whether or not the corresponding model fragment is in M. (The
model fragment corresponding to the ground literal (M ¢) is, of course, M(c).)
If the corresponding model fragment is in M, replace the literal by the model

fragment, else replace the literal by false.

Using the above procedure, each instantiated coherence constraint can be converted
into a propositional coherence constraint. All such propositional coherence con-
strainus, except the ones that are vacuously true, are added to C as constraints that
must be satisfied by any adequate model.?

For example, consider the following structural coherence constraint:

I'The universe of all objects in the knowledge base would include, among others, the components
in the device, the components terminals, and the parameters.

2If there are any vacuously false propositional coherence constraints then that means that the
corresponding coherence constraint can never be satisfied, and hence there is no adequate model.
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(implies
(and (Electromagnet 7object)
(Wire ?object)
(coiled-around ?object ?core)
(Magnetic-material ?core))

(Magnet ?core))

One way to instantiate '«e above constraint is to bind “?object” to wire-1, and to

bind “?core” to bms-1 to get the following ground constraint:

(implies
(and (Electromagnet wire-1)
(Wire wire-1)
(coiled-around wire-i bms-1)
(Magnetic-material bms-1))
(Magnet bms-1))

To convert the above ground constraint into a propositional coherence constraint,
let us assume that the structural context says that wire-1 is a Wire, and that it
is coiled-around bms-1, which is made of Magnetic-material. Hence, the above

constraint reduces to the following propositional coherence constraint:
Electromagnet (wire-1) => Magnet (bms-1)

On the other hand, if we bind “?core” to ptr-1, then we get the following ground
constraint:
(implies
(and (Electromagnet wire-1)
(Wire wire-1)
(coiled-around wire-1 ptr-1)
(Magnetic-material ptr-1))

(Magnet ptr-1))
Since wire-1 is not coiled-around ptr-1, the third conjunct in the antecedent of

the above constraint gets replaced by false, and hence the propositional coherence

constraint corresponding to the above ground constraint is vacuously true.
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In summary, given the structural and behavioral contexts, the structural and
behavioral coherence constraints can be converted into a set of propositional coherence
constraints. Note that the above discussion does not imply that it is a good idea to
convert all the structural and behavioral coherence constraints into propositional
coherence constraints, or that the above is the best way to do it. The point of
the discussion is to show that, given the structural and behavioral contexts, the
structural and behavioral coherence constraints can be viewed as a set of propositional
coherence constraints. This will simplify the complexity analysis of this chapter, and

the development of efficient algorithms in the next chapter.

4.1.2 Problem statement

Given the formalization of the input to the problem of finding an adequate model as

the following tuple:
Z = (M, contradictory, approzimation, A,C,p, q)

we are in a position to give a precise statement of the problem itself. Before we do
this we define three important types of models: coherent models, causal models, and

adequate models.

Coherent, causal, and adequate models

Recall that a model is a set of model fragments. We will require that the model
fragments in a model must be in M, i.e., we will only consider models consisting of
. applicable model fragments. A coherent model is a complete, consistent model, that

satisfies all the propositional coherence constraints in C:

Definition 4.1 (Coherent models) A model M C M is said to be a coherent

model if and only if the following conditions are satisfied:
1. M contains no mutually contradictory model fragments.

2. The equations of M are complete (Definition 3.4).
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3. All the constraints in C are satisfied by M.

Conditions 1 and 2 together ensure that coherent models are consistent (Defini-
tion 3.6), since if the equations of M are complete then the equations are not over-
constrained. Conditions 2 and 3 together ensure that coherent models are complete
(Definition 3.7), since C contains constraints that ensure that coherent models contain
model fragments from all required assumption classes.

A causal model is a coherent model that also explains the expected behavior.

Definition 4.2 (Causal model) A model M C M is a causal model, with respect
to the ezpected behavior causes(p,q), if and only if (a) M is a coherent model; and

(b) g causally depends on p in the causal ordering generated from the equations of M,
i.e., (p,q) € C(E(M)).

Finally, an adequate model is just a minimal causal model.

Definition 4.3 (Adequate model) A model M C M is an adequate model if and

only if M is a causal model and no coherent model strictly simpler than M is a causal
model, i.e., for all coherent models M', such that M' < M, M’ is not a causal model.
(Model simplicity is defined as in Definition 3.8. )

The minimal causal model problem

We now give a formal statement of the problem of finding an adequate model. We

call this problem the MINIMAL CAUSAL MODEL problem.

Definition 4.4 (MINIMAL CAUSAL MODEL) Let the input to the problem of finding
an adequate model be the tuple I:

1 = (M, contradictory, approzimation, A,C, p, q)

where the elements of the tuple are as in Equation 4.1. Find an adequate model with

respect to I, i.e., find a minimal, causal model with respect o T.
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To help in analyzing the complexity of the MINIMAL CAUSAL MODEL problem, we
introduce the CAUSAL MODF"., problem, which is the decision problem corresponding
to the MINIMAL CAUSAL MODEL problem. The CAUSAL MODEL problem asks whether

or not there exists a causal model, without requiring this causal model to be minimal.

Definition 4.5 (- USAL MODEL) Let tke input to the problem of finding an ade-
quate model be ihe . uple T

T = (M, contradictory, approzimation, A,C,p, q)

where the elements of the tuple are as in Equation 4.1. Does there ezist a causal

model with respect to I?

4.2 Complexity analysis

In this section we analyze the complexity of the CAUSAL MODEL problem and the
MINIMAL CAUSAL MODEL problem. In particular, we will show that the CAUSAL
MODEL problem is NP-complete. An immediate corollary of this is that the MINIMAL
CAUSAL MODEL problem is NP-hard. Since it is strongly believed that P s NP,
these results imply that, in general, the problem of finding adequate device models
is intractable, i.e., there is no polynomial time algorithm for finding adequate device
models.

We prove that the CAUSAL MODEL problem is NP-complete by first showing that
it is in NP, and then showing that three of its special cases are NP-hard. The three
special cases will identify three sources for the intractability of the CAUSAL MCDEL
problem. Informally, the three sources are: (a) deciding what phenomena to model,
i.e., deciding which assumption classes to use; (b) deciding how to model the chosen
phenomena, i.e., selecting model fragments from chosen assumption classes; and (c)
ensuring that causal models satisfy all the propositional coherence constraints. In
the next chapter, we will use this knowledge to design special cases of the MINIMAL
CAUSAL MODEL problem that can be solved in polynomial time.
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4.2.1 Problem size

Before we start the complexit_ analysis, we define the size of the input to the CAUSAL
MODEL and MINIMAL CAUSAL MODEL problems. The input to these problems is as

defined in Equation 4.1, reproduced here for ease of reference:
T = (M, contradictory, approzimation, A,C, p,q)
We define the size of the input as the sum of:
1. |[M], the number of model fragments in M;
2. |C|, the number of constraints in C;
3. |E(M)], the number of equations in the model fragments in M; and

4. |P(M))], the number of parameters used in the equations of the model fragments
in M.

It is easy to see that the amount of space occupied by any reasonable encoding of 7
must be a polynomial function of the size of 7.3 In particular, the number of tuples in
the contradictory and approzimation relatious is bounded by a quadratic function of
|M|, and the number of assurption classes in A is bounded by |M|. The complexity
anaiyses in this chapter and the next chapter are with respect to the above definition
of the size of a problem instance. In particular, the phrase “runs in polynomial time”
will often be used to mean “runs in time polynomial in the size of Z,” where the

instance Z will be clear from the context.

4.2.2 Preliminaries

We start the analysis by showing that the CAUSAL MODEL problem is in NP.

Lemma 4.1 The CAUSAL MODEL problem is in NP.

3Note that we have made the (reasonable) assumption that the amount of space used in encoding
each equation is bounded by a polynomial function of the number of parameters used in the equation.
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Proof: To show that the CAUSAL MODEL problem is in NP, we need to show that a
nondeterministic algorithm can find a causal model in (nondetermi: stic) polynomial
time. Since there are a finite number of models, each of which can be generated in
polynomial time, it suffices to show that checking whether or not a model is a causal

model can be done in time polynomial in the size of Z.

Given M C M, it is easy to check in polynomial time whether or not M contains
mutually contradictory model fragments, and whether or not M satisfies all the con-
straints in C. From the algorithms given in the previous chapter, it is also possible to
check in polynomial whether or not the equations of M are complete, and whether
or not ¢ causally depends on p in the causal ordering generated from the equations
of M. Hence, the CAUSAL MODZXL problem is in NP. O

We now show that the CAUSAL MODEL problem is NP-hard. We will give three
different proofs of this result. In each proof, we will introduce a subclass of the
instances of the CAUSAL MODEL problem, and show that even if we restrict ourselves
to solving just the problem instances in that subclass, the CAUSAL MODEL problem
is NP-hard. This will allow us to identify three different sources of intractabilisy.
The NP-hardness of the general CAUSAL MODEL problem is, of course, an immediate

consequence of the NP-hardness of any of the three subclasses.

In each of the subclasses of the CAUSAL MODEL problem we will restrict the
contradictory relation to be a relation that partitions the set of model fragments into
the set of assumption classes, i.e., two model fragments are in the same assumption

class if and only if they are mutually contradictory:

(Vmy1,m; € M) my # my = (contradictory(mi,m;) = (34 € A) my,m; € A)
(4.10)
A consequence of the above restriction is that we can conceptually view the problem
of finding a causal model as one involving the following two steps: (a) selecting a set
of assumption classes; and (b) selecting a single model fragment from each selected
assumption class. Intuitively, this corresponds to deciding which phenomena to model

(step (a)), and then deciding how to model the chosen phenomena (step (b)).
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4.2.3 The SELECT MODEL FRAGMENTS problem

The first special case of the CAUSAL MODEL problem consists of those instances of
the problem that satisfy the following two conditions: (a) the instance has no propo-
sitional coherence constraints; and (b) every causal model of the instance includes
a model fragment from each assumption class. Hence, this special case allows us to
identify the first source of intractability: choosing a model fragment from each as-
sumption class in a set of selected assumption classes is intractable. More abstractly,
even if we knew exactly which phenomena we wanted to model, deciding how to model

the chosen phenomena is intractable.

Definition 4.6 (SELECT MODEL FRAGMENTS) This problem is the special case of
the CAUSAL MODEL problem which includes ezactly those instances of the CAUSAL
MODEL problem in which (a) the contradictory relation partitions the set M of model
fraginents into the set A of assumption c’=sses; (b) C = §; and (c) every causal model
of the instance includes a model fragment from each assumption class, i.e., if M C M

i a causal model and A € A is an assumption class, then M N A # 0.

We now show that the above special case is NP-hard. The proof of this lemma is
based on a reduction from the ONE-IN-THREE 3SAT problem, a variation of the more
common 3SAT problem in which an acceptable truth assignment must satisfy exactly
one literal in each clause. Briefly, the reduction introduces a model fragment for each
literal in an instance of ONE-IN-THREE 3SAT, with model fragments corresponding
to complementary literals being placed in the same sssumption class. The mapping
between truth assignments and models is straightforward: a literal is true if and only
if the corresponding model fragment is in the model. Equations are assigned to model
fragments to ensure that a model is a causal model if and only if the corresponding

truth assignment assigns exactly one true literal to each clause.
Lemma 4.2 The SELECT MODEL FRAGMENTS problem is NP-hard.

Proof: To show that the SELECT MODEL FRAGMENTS problem is NP-hard, we reduce
an arbitrary instance of the ONE-IN-THREE 3SAT problem to an instance of the SELECT
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MODEL FRAGMENTS problem. An instance of the ONE-IN-THREE 3SAT problem is

defined as follows:

Definition 4.7 (ONE-IN-THREE 3SAT) Let U = {u;,...,un} be a set of n boolean
variables, and C = {¢),...,cn} a set of m clauses over U, such that each clause
¢ € C,1 £1 < m, has |¢;| = 3. Is there a truth assignment for U such that each

clause in C has ezactly one true literal?

The ONE-IN-THREE 3SAT problem is shown to be NP-complete in [Schaefer, 1978].

We now reduce an arbitrary instance
7, =(U,C)
of the ONE-IN-THREE 3SAT problem to an instance
I, = (M, contradictory, approzimation, A, 0, p, q)

of the SELECT MODEL FRAGMENTS problem as follows.

Introduce a model fragment m; for each literal / in Z;, and a model fragment m:
M={my, :1<i<n}U{my:1<i<n}u{m}
Let m; and m; be contradictory, where I and [ are complementary literals:
contradictory(m,,,my,), for 1 <i<n

Note that contradictory partitions M into a set of mutually consistent assumption
classes, with m being in its own assumption class. This defines A, the set of assump-

tion classes:
A = {{mu.',rnu‘.'} ! S : S n} U {{m}}

Let approzimation be the empty relation, so that no model fragment is an approzi-
mation of any other model fragment, let C = 0.
Introduce the set P of (m 4+ n + 3) parameters:

P = {Po,P],...,Pm+n+2}
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Welet p = P and ¢ = Pn4n42. Next, we introduce the set E of (3m + 2n + 3)

equations:*

E=(U E)u(U RUG

1<78m 1<ign
where E; contains an equation for each literal in clause c;, F; contains an equation

for literals u; and u;, and G contains three equations, as follows:

E; = {ej:lis aliteral in clause c;}
Fi = {fu,fa}
G = {91,929}

The parameters of the equations in E are defined as follows:

[ {Py P} Ife€ Ej;1<j<m
{Pntis Pntiv1} IHe€eF,1<i<n
If e € E, then P(e) = { {Po} Ife=g,

{Po, P} fe=g,
| {Prtnt1; Prynt2} He=gs

For each e € E, let P.(e) = P(e). The equations in the model fragments of M are

defined as follows:

E(my) = {e; :literal lis in clause ¢;} U {fi}

E(m) = {ghg?, g3}

That completes the reduction. Clearly, the reduction can be done in polynomial
time. We now show that 7, is, indeed, in instance of the SELECT MODEL FRAGMENTS
problem. Since C = § in T,, we need only show that every causal model of 7, contains
a model fragment from each assumption class.

Let M be any causal model of Z,. We first show that P(M) = P. If P(M) # P,
then there exists some parameter P, € P,1 < k < (m + n + 1), with P, ¢ P(M)

(Po and Priny2 must, of course, be in P(M)). Since each ecuation in E, except g;,

“The equations that we introduce in this proof, and in all the other proofs in this chapter, will
not contain any differential equations. Hence, E = ic(E).
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relates two parameters whose subscripts differ by 1, it follows that no equation relates
parameters with subscripts less than k to parameters with subscripts greater than k.
Hence, no parameter with subscript less than k can be related to any parameter with
subscript greater than k, and hence Po and Pnyn42 are unrelated, contradicting the
fact that M is a causal model. Hence P(M) = P.

Next, we show that E(M) contains exactly one equation from each E;,1<j<m,
exactly one equation from each F;, 1 <7 < n, and the three equations in G. First, we
show that E(M) must contain at least one equation from E;, 1 < j < m. If E(M)
contains no equation from E; for some j, 1 < j < m, then E(M) contains no equation
that relates a parameter with subscript less than or equal to j to a parameter with
subscript greater than or equal to j+1. This follows from the facts that all equations,
except g1, relate two parameters whose subscripts differ by 1, and the only equations
that relate P; to P;,, are found in E;. Hence, Py and P, 4n42 are unrelated, violating
the fact that M is a causal model. Hence, E(M) contains at least one equation from
each E;, 1 < j < m. A similar argument shows that E(M) contains at least one
equation from each F, 1 <7 < n, and that E(M) must contain g; and g5 (and hence
¢91). Hence E(M) contains at least (m + n + 3) equations. But since M is complete,
|E(M)| = |P(M)| = (m +n +3), and hence E(M) contains exactly one equation
from each E;, 1 < j < m, exactly one equation from each F;, 1 <7< n, and the
three equations in G.

Recall that the assumption classes of Z, are the following:

Al= U {mu.'amu'.'} U {m}

1<ikn

Since M contains the three equations in G, M contains the model fragment m. Now
we show that M contains a model fragment from each of the other assumption classes,
i.e., for each 7, 1 < ¢ < n, M contains 4 O my,. Since M is consistent, at
most one of m,,; and my, is in M. Sinc ontains an equation from F;, at least
one of m,; and mg, is in M. Hence, exactly one of m,, and my, is in M. Hence, 7,
is indeed an instance of the SELECT MODEL FRAGMENTS problem.

We now show that 7, has an acceptable truth assignment if and only if 7, has a

causal model.
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(=) Suppose that ) has an acceptable truth assignment on U. Let M be the

following model:
M = {my, : u; is true} U {my, : u; is false} U {m}

We claim that M is a causal model. First, M contains no mutually contradictory
model fragments, because if M did contain mutually contradictory model fragments,
then for some 7,1 < i < n, we have m,,,m; € M. But this means that u; is both
true and false, which is impossible.

T~ show that the set of equations of M is complete, it suffices to show, by
Lemma 3.2, that there is an onto causal mapping from E(M) to P(M). We start
by claiming that E(M) contains exactly (m + n + 3) equations, one from each
E;,1 < j £ m, one from each Fj,1 < i < n, and the three equations in G. Since
m € M, it follows that g1, g, 93 € E(M). Since u;, 1 < i < n, is either true or false,
M contains exactly one of m,, or my, and hence E(M) contains exactly one of g
or fg;. Hence, E(M) contains exactly one equation from each F},1 <i < n. Finally,
let I; be the single true literal in clause ¢j, 1 £ < <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>